Bài toán 6. Tìm tổng các hệ số của đa thức nhận được sau khi bỏ dấu ngoặc trong biểu thức: A(x) = ( 3 - 4x + x2 )2004 .( 3 + 4x + x2 )2005
Bài toán 7. Cho a là số gồm 2n chữ số 1, b là số gồm n + 1 chữ số 1, c là số gồm n chữ số 6. Chứng minh rằng a + b + c + 8 là số chính phương.
Bài toán 8. Chứng minh rằng với mọi số tự nhiên a, tồn tại số tự nhiên b sao cho ab + 4 là số chính phương.
Bài toán 9. Cho hai số tự nhiên a và b (a < b). Tìm tổng các phân số tối giản có mẫu bằng 7, mỗi phân số lớn hơn a nhưng nhỏ hơn b.
Bài toán 10. Chứng minh rằng: A = 1 + 3 + 5 + 7 + ... + n là số chính phương (n lẻ).
giúp mình với làm thế nào ?
Bài 10:
Gọi \(n=2a-1\left(a\in N,a>1\right)\)
Có: \(A=1+3+5+7+...+\left(2a-1\right)\)
\(=\dfrac{1+\left(2a-1\right)}{2}.a=a^2\)
Vậy A là số chính phương
6
Tổng các hệ số của đa thức khi khai triển là;
\(\left(3-4+1\right)^{2004}\cdot\left(3+4+1\right)^{2005}=0\)