d: AC=12cm
=>AH=ABxAC:BC=9x12:15=7,2(cm)
a: AC=12cm
b: BD=AC=12cm
c: Xét tứ giác ABDC có
M là trung điểm của AD
M là trung điểm của BC
Do đó: ABDC là hình bình hành
mà \(\widehat{BAC}=90^0\)
nên ABDC là hình chữ nhật
Suy ra: DC\(\perp\)DB
d: AC=12cm
=>AH=ABxAC:BC=9x12:15=7,2(cm)
a: AC=12cm
b: BD=AC=12cm
c: Xét tứ giác ABDC có
M là trung điểm của AD
M là trung điểm của BC
Do đó: ABDC là hình bình hành
mà \(\widehat{BAC}=90^0\)
nên ABDC là hình chữ nhật
Suy ra: DC\(\perp\)DB
Bài 7 : Cho ∆ABC vuông tại A, M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD = MA.
a) Cho AB = 9cm, BC = 15 cm.Tính AC b) Tính BD
c) Chứng minh DC vuông góc với DB. d) Kẻ đường cao AH ( H thuộc BC) Tính AH.
Bài 2. Cho tam giác ABC nhọn có AB > AC, M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD = MA
.a) Chứng minh: tam giác AMB = tam giác DMCDMC và AB // CD
b) Kẻ AH vuông góc BC tại H; DK vuông góc BC tại K. Chứng minh: AH//DK và AH = DK.
c) Trên tia đối của tia KD lấy điểm E sao cho KE = KD.Chứng minh: ME = MA.
d)Chứng minh: AE//BC.
( vẽ hình , ghi giả thuyết , kết luận cho mình nhakk )
Bài 5: (3đ) Cho tam giác ABC vuông tại A. Gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD = MA.
a/Chứng minh ∆AMC = ∆ DMC.
b/Chứng minh AC = BD và AC //BD
c/Chứng minh ∆ABC = ∆ DCB. Tính số đo góc BDC
Cho tam giác ABC vuông tại A có AB < AC, gọi M là trung điểm của BC,trên tia đối của tia MA lấy điểm D sao cho MA = MD.
a)Chứng minh :tam giác ABM = tam giác DCM. Từ đó suy ra AB // CD.
b)Trên tia đối của tia CD lấy điểm E sao cho CA = CE, gọi I là trung điểm của AE. Chứng minh góc CAI = góc CEI và tính số đo góc CAE.
c)Kẻ AH vuông góc BC (H thuộc BC). Qua E kẻ Đường thẳng song song với AC, đường thẳng này cắt đường thẳng AH tại F. Chứng minh : AF = BC.
Cho tam giác ABC vuông tại A có AB<AC, gọi M là trung điểm của BC, trên tia đối của tia MA lấy điểm D sao cho MA = MD
a) Chứng minh tam giac ABM = tam giác DCM. Từ đó suy ra AB//CD
b)Trên tia đối của tian CD lấy điểm E sao cho CA = Ce, gọi I là trung điểm của AE. Chứng minh góc CAI = góc CEI và tính số đo góc CAE
c) Kẻ AH vuông góc với BC (H thuộc BC). Qua E kẻ đường thẳng song song với AC, đường thẳng này cắt đường thẳng AH tại F. Chứng minh: AF=BC
Bài 2. Cho tam giác ABC nhọn có AB > AC, M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD = MA .
a) Chứng minh: tam giác AMB = tam giác DMCDMC và AB // CD b) Kẻ AH vuông góc BC tại H; DK vuông góc BC tại K. Chứng minh: AH//DK và AH = DK.
c) Trên tia đối của tia KD lấy điểm E sao cho KE = KD.Chứng minh: ME = MA.
d)Chứng minh: AE//BC. ( vẽ hình , ghi giả thuyết , kết luận cho mình nhakk ()
cho tam giác ABC vuông tại A, kẻ AH vuông góc với BC(H thuộc BC), gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD = MA. Chứng minh: a) góc ABM = góc DCM b) Tam giác ACD vuông c) MA= BC/2 d) AB^2 - AC^2 = HB^2 - HC^2
. Cho rABC vuông tại A, kẻ AH vuông góc với BC tại H. Gọi M là trung điểm của BC. Trên tia đối tia MA lấy điểm D sao cho DM = MA.
a) So sánh b) Chứng minh : AB // CD
c) Trên tia đối tia CD lấy điểm I sao cho CI = CA, qua I vẽ đường thẳng song song với AC cắt đường thẳng AH tại E. Chứng minh : AE = BC.