`a, 8x^3 - 12x^2 + 6x - 1 = 0`
`=> (2x - 1)^3 = 0`
`=> 2x - 1 =0`
`=> 2x = 1`
`=>x = 1:2`
`=>x=1/2`
Vậy: `x=1/2`
`b, x^3 - 6x^2 + 12x - 8 = 27`
`=> (x - 2)^3= 27`
`=> (x-2)^3 = 3^3`
`=>x-2=3`
`=>x=3+2`
`=>x=5`
Vậy: `x=5`
`c, x^2 - 8x + 16 = 5(4-x)^3`
`=> (x-4)^2 -5(4-x)^3=0`
`=> (x-4)^2 + 5(x-4)^3=0`
`=> (x-4)^2[1+5(x-4)]= 0`
`=> (x-4)^2(5x-3)=0`
`=> [((x-4)^2 = 0),(5x-3=0):}`
`=> [(x = 4),(x = 3/5):}`
Vậy: `x=4;x=3/5`
`d, (2-x)^3 = 6x(x-2)`
`=> (2-x)^3 - 6x(x-2)=0`
`=> (2-x)^3 +6x(2-x)=0`
`=> (2-x)[(2-x)^2 + 6x]=0`
`=> (2-x)(4-4x+x^2 + 6x)=0`
`=> (2-x)(x^2 + 2x +4)=0`
`=> [(2-x=0),(x^2 + 2x + 4 \ne 0):}`
`=> x=2`
Vậy: `x=2`