\(A=-\left(x^2+2xy+y^2\right)-\left(y^2-y+\dfrac{1}{4}\right)+\dfrac{8089}{4}\)
\(A=-\left(x+y\right)^2-\left(y-\dfrac{1}{2}\right)^2+\dfrac{8089}{4}\)
Do \(\left\{{}\begin{matrix}-\left(x+y\right)^2\le0\\-\left(y-\dfrac{1}{2}\right)^2\le0\end{matrix}\right.\) ; \(\forall x;y\)
\(\Rightarrow A\le\dfrac{8089}{4};\forall x;y\)
Vậy \(A_{max}=\dfrac{8089}{4}\) khi \(\left\{{}\begin{matrix}x+y=0\\y-\dfrac{1}{2}=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\y=\dfrac{1}{2}\end{matrix}\right.\)