cho tam giác ABC có 3 góc nhọn . Các đường vao AD,BE,CF cắt nhau tại H
1. Chứng minh rằng tam giác AEF đồng dạng với tam giác ABC
2. Chứng minh rằng :BH.BE+CH.CF=BC^2
3. Qua F kẻ đường thẳng vuông góc với FE cắt BE tại M . chứng minh FB.EC=FC.BM và EF.BC+BF.CE=BE.CF
4. Kẻ FI,EJ cùng vuông góc với BC (I,J thuộc BC). Các điểm K,L lần lượt thuộc AB,AC sao cho IK song song với AC,LJ song song với AB . Chứng minh 3 đường thẳng EI,FJ và KL đồng quy
Cho tam giác ABC vuông tại A(AB,AC) kẻ AH vuông góc BC tại H. Qua B kẻ đường thẳng vuông góc với AB, cắt đường thẳng AH tại D. Gọi tia AB và CD cắt nhau tại E.
a) Chứng minh BE/BA=DE/DC
b)Qua E kẻ đường thẳng song song với AC, đường thẳng này lần lượt cắt các đường thẳng AD,BC tại I,K. Chứng minh EI=EK.
c)Gọi N là giao điểm của EH và AC. Gọi Q là giao điểm của DN và BC. Gọi P là giao điểm của BN và AD. NA=NC và PQ//BD.
d)Gọi G là giao điểm của đường thẳng AQ và CD. Qua Q kẻ đường thẳng song song với CE, cắt đường thẳng AC tại T. Chứng minh Pt vuông góc AD
Cho tam giác ABC, phân giác AD, qua D kẻ đường thẳng song song với AB cắt AC tại E. Qua E kẻ đường thẳng song song với BC cắt AB tại F
a) Chứng minh AE=BF
b) Kẻ phân giác ngoài tại A của tam giác ABC cắt DE tại G. Chứng minh rằng E là trung điểm của DG
c) Đường thẳng vuông góc với AD tại D cắt AB, AC lần lượt tại H, K. Chứng minh AH=2FB
d) Từ E kẻ đường thẳng song song với DK cắt AD tại I.Chứng minh H, I, G thẳng hàng
Cho tam giác ABC nhọn , M là trung điểm của BC, H là trực tâm . Qua H kẻ đường thẳng vuông góc với HM cắt AB và AC tại I và K . Từ C kẻ đường thẳng song song với IK cắt AH tại N , AB tại D. Chứng minh: ND=NC
Cho tam giác ABC nhọn , M là trung điểm của BC, H là trực tâm . Qua H kẻ đường thẳng vuông góc với HM cắt AB và AC tại I và K . Từ C kẻ đường thẳng song song với IK cắt AH tại N , AB tại D. Chứng minh: ND=NC
Cho tam giác ABC nhọn. H là trực tâm tam giác, M là trung điểm BC, đường thẳng qua H vuông góc HM,cắt AB tại I ,cắt AC tại K .Từ C kẻ đường thẳng song song IK, cắt AH tại N, cắt AB tại P. a, Chứng minh MN vuông góc HC b,Chứng minh NC =NP c,chứng minh HI = HK
cho tam giác ABC nhọn (AB < AC), các đường cao AE,BF cắt nhau tại H. gọi M là trung điểm của BC, qua H vẽ đường thẳngA vuông góc với HM, a cắt AB,AC lần lượt tại I ,K. Qua C kẻ đường thẳng b song song với đường thẳng IK, b cắt AH,AB theo thứ tự tại N và D. chứng minh NC=ND,HI=HK
. Cho tam giác ABC nhọn(AB < AC) các đường cao BE và CF cắt nhau tại H. a) Chứng minh AH vuông góc với BC b) Từ B kẻ đường thẳng song song với CF, từ C kẻ đường thẳng song song với BE hai đường thẳng này cắt nhau tại K. Gọi M là trung điểm của Bc. Chứng Minh H, M, K thẳng hàng c) Gọi O là trung điểm của AK. Chứng minh OM vuông góc với BC
Cho tam giác ABC vuông tại A ( AB < AC ) . Kẻ AH vuông góc với BC tại H. Qua B kẻ đường thẳng vuông góc với AB , cắt đường thẳng AH tại D. Gọi tia AB và tia CD cắt nhau tại E. BE DE
a ) Chứng minh : BA DC
b ) Qua E kẻ đường thẳng song song với AC , đường thẳng này lần lượt cắt các đường thăng AD , BC tại I , K. Chứng minh : El = EK ;
c ) Gọi N là giao điểm của EH và AC ; Gọi Q là giao điểm của DN và BC ; Gọi P là giao điểm của BN và AD . Chúng minh : NA = NC và PQ // BD ;
d ) Gọi G là giao điểm của đường thẳng AQ và CD . Qua Q kẻ đường thẳng song song với CE , cắt đường thẳng AC tại T. Chứng minh PT LAD .