a: Ta có: BC//AD
mà BC\(\perp\)BD
nên AD\(\perp\)BD
Xét ΔABC vuông tại A và ΔDAB vuông tại D có
\(\widehat{ABC}=\widehat{DAB}\left(=90^0-\widehat{DBA}\right)\)
Do đó: ΔABC\(\sim\)ΔDAB
b: Áp dụng định lí Pytago vào ΔBAC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=15^2+20^2=625\)
hay BC=25cm
Ta có: ΔABC\(\sim\)ΔDAB
nên \(\dfrac{AB}{DA}=\dfrac{BC}{AB}=\dfrac{AC}{DB}\)
\(\Leftrightarrow\dfrac{15}{DA}=\dfrac{5}{3}=\dfrac{20}{DB}\)
Suy ra: DA=9cm; BD=12cm