a: XétΔAEB vuông tại E và ΔAFC vuông tại F có
AB=AC
góc BAE=góc CAF
=>ΔAEB=ΔAFC
b: Xét ΔAME và ΔCMF có
MA=MC
góc MAE=góc MCF
AE=CF
=>ΔAME=ΔCMF
a: XétΔAEB vuông tại E và ΔAFC vuông tại F có
AB=AC
góc BAE=góc CAF
=>ΔAEB=ΔAFC
b: Xét ΔAME và ΔCMF có
MA=MC
góc MAE=góc MCF
AE=CF
=>ΔAME=ΔCMF
Cho tam giác ABC vuông tại đỉnh A, M là trung điểm BC.Trên cạnh BC, lấy điểm D tùy ý ( D khác M). Từ B,C hạ BE, CF vuông góc AD . CM:
a, tam giác AEB = tam giác AFC
b, tam giác AME = tam giác CMF
c, tam giác MEF vuông cân
giúp mình vs
cho tam giác ABC vuông cân tại đỉnh A, M là trung điểm của BC. trên cạnh BC, lấy điểm D tùy ý (D khác M). từ B, C hạ BE, CF vuông góc AD. CM:
a) tam giác AEB= tam giác AFC
b) tam giác AME= tam giác CMF
c) tam giác MEF vuông cân
cho tam giác ABC vuông cân đỉnh A, M là trung điểm của BC. Trên cạnh BC lấy điểm D tùy ý ( D khác M). Từ B,C hạ BE, CF vuông góc với AD. Chứng minh: a;tam giác AEB=AFC b; tam giác AME=CME c;tam giác MEF vuông cân
bài 1:cho tam giác ABC,2 trung tuyến BM và CN cắt nhau tại G. nối dài bm một đoạn ME=GM và nối CN một đoạn NF=NG. chứng minh:
a; BF=CE=AG b; BF //CE c; EF//BC
bài 2: cho tam giác ABC vuông cân đỉnh A, M là trung điểm của BC. Trên cạnh BC lấy điểm D tùy ý ( D khác M). Từ B,C hạ BE, CF vuông góc với AD. Chứng minh:
a;tam giác AEB=AFC b; tam giác AME=CME c;tam giác MEF vuông cân
bài 3:cho tam giác ABC có góc A bằng 120 độ, các tia phân giác của góc A và C là AD, CE cắt nhau tại O. đường phân giác góc ngoài B của tam giác ABC cắt AC tại F. chứng minh:
a; góc FBO=90 độ b; DF là tia phân giác của góc D của tam giác ABD c; D,E,F thẳng hàng
Bài 1: Cho tam giác ABC cân tại A có đường phân giác CD. Qua D kẻ tia DF vuông góc với DC; DE song song với BC ( F thuộc BC; E thuộc AC ). Gọi M là giao điểm của DE với tia phân giác của góc BAC. CMR:
1) CF= 2BD
2) DM= 1/4 CF
Bài 2: Cho tam giác ABC cân tại A. Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE. Các đường thẳng vuông góc BC kẻ từ D và E cắt AB và AC lần lượt ở M và N. CMR:
1) DM=EN
2) Đường thẳng BC cắt MN tại I là trung điểm của MN
3) Đường thẳng vuông góc với MN tại I luôn đi qua một điểm cố định khi D thay đổi trên cạnh BC
Bài 3: Cho tam giác ABC nhọn. Về phía ngoài của tam vẽ các tam giác vuông cân ABD và ACE đều vuông tại A. Gọi M và N lần lượt là trung điểm của BD và CE, P là trung trung điểm của BC. CMR: Tam giác PMN vuông cân
Cho tam giác ABC vuông cân tại A. Trung điểm của BC là M, D là điểm nằm giữa B và M. Kẻ BE vuông góc với AD tại E, CF vuông góc với AD tại F. Chứng minh:
a.MA = MB
b.BE = AF
c.Tam giác MEF vuông cân
Cho tam giác ABC cân tại A. Kẻ BE, CF lần lượt vuông góc với AC và AB ( E thuộc Ac, F thuộc AB) a) cm tam giác ABE= tam giác ACF b) gọi I là giao điểm BE và CF. Chứng minh tam giác BIC cân c) so sánh FI và IC d) gọi M là trung điểm cảu BC. Chứng minh A,I,M thẳng hàng ( giúp mk vs mai mk nộp r)
cho tam giác ABC cân tai A . kẻ BE vuông góc với AC tại E,CF vuông góc với AB tại F.
a, CM am giác AFC=tam giác AEB
b,BE cắt CF tại d. CM AD là tia phân giắc của goác FAE
c, gọi M là trung điểm của BC. CM AM vuông góc với FE
1) Cho tam giác ABC vuông tại A ( AB > AC ) . Trên tia đối của tia AC lấy điểm D sao cho AD = AB. Trên cạnh AB lấy điểm E sao cho AC = AE
a) Chứng minh rằng : tam giác ABC = tam giác ADE
b) Gọi M , N lần lượt là trung điểm của DE và BC. Chứng minh tam giác ADM = tam giác ABN và tam giác AMN vuông cân
c) Qua E kẻ EH vuông góc với BC tại H. Chứng minh rằng 3 điểm D ; E ; H thẳng hàng và CE vuông góc với BD
Bài 1: Cho tam giác vuông ABC, góc A = 90o, phân giác BD. Kẻ BD vuông góc BC tại E. Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh rằng:
a) BD là đường trung trực của AE.
b) AD<DC
c) Ba điểm E, D, F thẳng hàng
Bài 2: Cho tam giác vuông ABC, góc A = 90o , AB = 6cm, AC = 8cm.
a) Tính BC
b) Trung trực của BC cắt AC tại D và cắt AB tại F. Chứng minh góc DBC = góc DCB
c) Trên tia đối của tia DB lấy điểm E sao cho DE=DC. Chứng minh tam giác BCE vuông
d)Chứng minh:DF là phân giác của góc ADE và BE vuông góc CF
Bải 3: Cho tam giác đều ABC. Tia phân giác góc B cắt cạnh AC ở M. Từ A kẻ đường thẳng vuông góc với AB cắt các tia BM, BC lần lượt ở M và E. Chứng minh:
a) Tam giác ANC là tam giác cân
b) NC vuông góc BC
c) Tam giác AEC là tam giác cân
d) So sánh BC và NE
Bài 4: Cho tam giác nhọn ABC, kẻ BM vuông góc AC, CN vuông góc AB. Trên tia đối của tia BM lấy điểm D sao cho BD=AC, trên tia đối của tia CN lấy điểm E sao cho CE=AB. Chứng minh:
a) Góc ACE= góc ABD
b) Tam giác ABD = tam giác ECA
c) Tam giác AED là tam giác vuông cân