a) \(x^2-5x-6=0\)
⇔\(\left(x^2+x\right)-\left(6x+6\right)=0\)
\(\Leftrightarrow\left(x-6\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=6\\x=-1\end{matrix}\right.\)
b) \(x^4-2x^2+1=0\)
\(\Leftrightarrow\left(x^2-1\right)^2=0\)
\(\Leftrightarrow x^2=1\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
a) x ( x - 5 ) = 6
<=> x^2-5x-6=0
Ta thấy : 1-(-5)-6=0
=> x1=-1; x2=6
b) x4 - 2x2 +1 = 0
Đặt t=x2 với t\(\ge0\)
Ta có: t2-2t+1=0
<=>(t-1)2=0
<=> t=1
<=> x1=1;x2=-1