Bài 3. Cho tam giác ABC vuông tại A có AB<AC. Trên cạnh BC lấy điểm H sao cho HB=BA, từ H kẻ HE vuông góc với BC tại H (E thuộc AC)
a.)Chứng minh △ABE = △HBE
b.)Chứng minh tam giác AEH cân tại E
c.) Chứng minh : BE là đường trung trực của AH
d.) Gọi K là giao điểm của HE và BA. Chứng minh: BE vuông góc KC
a: Xét ΔBAE vuông tại A và ΔBHE vuông tại H có
BE chung
BA=BH
=>ΔBAE=ΔBHE
b: ΔBAE=ΔBHE
=>EA=EH
=>ΔEAH cân tại E
c: BA=BH
EA=EH
=>BE là trung trực của AH
d: Xét ΔBKC có
KH,CA là đường cao
KH cắt CA tại E
=>E là trực tâm
=>BE vuông góc KC
Đúng 2
Bình luận (0)