Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
No name

Bài 3. Cho tam giác ABC đường cao BK và CI cắt nhau tại H. Các đường thẳng kẻ từ B vuông góc với AB và kẻ từ C vuông góc với AC cắt nhau tại D . a) Chứng minh tứ giác BHCD là hình bình hành . b) Chứng minh AI . AB = AK . AC c) Chứng minh tam giác AIK và ACB đồng dạng . d) Tam giác ABC cần có điều kiện gì để đường thẳng DH đi qua A ? Khi đó tứ giác BHCD là hình gì ?

Nguyễn Lê Phước Thịnh
15 tháng 5 2022 lúc 18:21

a: Xét tứ giác BHCD có 

BH//CD

BD//CH

Do đó: BHCD là hình bình hành

b: Xét ΔABK vuông tại K và ΔACI vuông tại I có

góc BAK chung

Do đó: ΔABK\(\sim\)ΔACI

Suy ra: AB/AC=AK/AI

hay \(AB\cdot AI=AK\cdot AC\)

c: Xét ΔAIK và ΔACB có

AI/AC=AK/AB

góc A chung

Do đó: ΔAIK\(\sim\)ΔACB


Các câu hỏi tương tự
Nguyễn Hiền
Xem chi tiết
bancutcho noob
Xem chi tiết
BÙI THỤC HOA
Xem chi tiết
Đỗ quang Hưng
Xem chi tiết
Bùi Thị Thảo
Xem chi tiết
Nguyễn Đức An
Xem chi tiết
UVC Troller
Xem chi tiết
Trần Thảo Nhi
Xem chi tiết
Lê Thành Đạt
Xem chi tiết