Bài 3. Cho tam giác ABC cân tại A. Kẻ AH vuông góc với BC và H thuộc BC
a) Chứng minh: ΔAHB = ΔAHC
b) Tính độ dài AH, biết AB = 13cm và BC = 10cm
c) Từ H kẻ đường thẳng song song với AC cắt AB tại D. Chứng minh AD = DH
d) Gọi E là trung điểm của AC. Gọi K là giao điểm của AH và CD.
Chứng minh: Ba điểm B, K và E là thẳng hàng
a. xét tam giác vuông AHB và tam giác vuông AHC, có:
AB = AC ( ABC cân )
góc B = góc C ( ABC cân )
Vậy tam giác vuông AHB = tam giác vuông AHC ( ch.gn )
b. ta có: trong tam giác cân ABC đường cao cũng là đường trung tuyến
=> BH = BC :2 = 10 : 2 =5 cm
Áp dụng định lý pitago vào tam giác vuông ABH
\(AB^2=AH^2+BH^2\)
\(\Rightarrow AH=\sqrt{AB^2-BH^2}=\sqrt{13^2-5^2}=\sqrt{144}=12cm\)