cho nửa đường tròn (O) đường kính AB =2R. vẽ đường tròn tâm K đường kính OB
a) chứng tỏ hai đường tròn (O) và (K) tiếp xúc nhau
b) vẽ dây BD của đường tròn (O) (BD khác đường kính ), dây BD cắt đường tròn (K) tại M. Chứng minh KM // OD
cho nữa đường tròn (O) đường kính AB=2R. Vẽ đường tròn tâm K đường kinh OB.
a..CM hai đường tròn tâm O và K tiếp xúc nhau
b..vẽ dây BD khác đường kinh của đường tròn (O) nó cắt đường tròn(K) tại M. CM KM//OD
Cho tam giác ABC nội tiếp đường tròn tâm O, bán kính R, đường kính BC với AB < AC
a) tính góc BAC
b) Vẽ đường tròn tâm I, đường kính AO cắt AB, AC lần lượt tại H và K. Chứng minh H, I, K thẳng hàng
c) Tia OH, OK cắt tiếp tuyến tại A với đường tròn tâm O lần lượt tại D, E. Chứng minh BD + CE = DE
d) Chứng tỏ đường tròn đi qua 3 điểm D, O, E tiếp xúc với BC
Cho đoạn thẳng OO’ và điểm A nằm giữa hai điểm O và O’. vẽ đường tròn (O; OA) và đường tròn (O’; O’A). Qua A vẽ đường thẳng cắt (O) tại B và cắt (O’) tại C.
a)Chứng minh(O) và (O’) tiếp xúc với nhau.
b)Vẽ đường kính BD của (O) và đường kính CE của (O’). Chứng minh D, A, E thẳng hàng.
(4) cho đường tròn tâm (O) và điểm A nằm ngoài đường tròn, từ A vẽ tiếp tuyến AB vs đường tròn (B là tiếp điểm). kẻ đường kính BC của đường tròn (O). AC cắt đường tròn (O) tại D (D khác C)
a) c/m: BD ⊥AC và \(AB^2=AD.AC\)
b) từ C vẽ dây CE//OA, BE cắt OA tại H. c/m: H là trg điểm BE và AE là tiếp tuyến đg tròn (O)
c) c/m: \(\widehat{OHC}=\widehat{OAC}\)
d) tia OA cắt đg tròn (O) tại F. c/m: \(FA.CH=HF.CA\)
giúp mk vs ạ mai mk học rồi
Cho đường tròn tâm O và cột điểm A nằm ngoài đường tròn tâm O . Từ A vẽ hai tiếp tuyến AB, AC của đường tròn tâm O (B và C là hai tiếp điểm) . Gọi H là giao điểm của OA và BC.
a)Chứng minh OA vuông góc với BC tại H
b) Từ B vẽ đường kính BD cua (O), đường thẳng AD cắt (O) tại E ( khác D)
Chứng minh: AE.AD=AH.AO
c) Qua O vẽ đường thẳng vuông góc với cạnh AD tại K và cắt đường BC tai F. Chứng minh FD là tiếp tuyến của đường tròn tâm O.
Cho (O), đường kính AB = 2R. Điểm H thuộc đoạn OA. Kẻ dây CD ⊥ AB tại H. Vẽ đường tròn tâm I đường kính AH và đường tròn tâm K đường kính BH. Nối AC cắt (I) tại E, nối BC cắt (K) tại F. Chứng minh:
a) Tứ giác HECF là hình chữ nhật
b) Tứ giác ABFE nội tiếp
Cho đường tròn tâm O và một điểm A nằm ngoài đường tròn này. Từ A vẽ hai tiếp tuyến AB, AC của đường tròn (O) (B và C là hai tiếp điểm). Gọi H là giao điểm của OA và BC.
a. Chứng minh OA vuông góc với BC tại H.
b. Từ B vẽ đường kính BD của (O), đường thẳng AD cắt đường tròn(O) tại E (E khác D). Chứng minh: AE.AD = AC^2
c. Qua O vẽ đường thẳng vuông góc với cạnh AD tại K và cắt đường BC tại F. Chứng minh rằng FD là tiếp tuyến của đường tròn (O).