\(a,=x^4-x^2+2x^3-2x\)
\(b,=\left(2x^2-3x+4x-2\right)\left(3-x\right)\\ =\left(2x^3+x-2\right)\left(3-x\right)\\ =6x^3+3x-6-2x^4-x^2+2x\\ =-2x^4+6x^3-x^2+5x-6\)
\(a,=x^4-x^2+2x^3-2x\)
\(b,=\left(2x^2-3x+4x-2\right)\left(3-x\right)\\ =\left(2x^3+x-2\right)\left(3-x\right)\\ =6x^3+3x-6-2x^4-x^2+2x\\ =-2x^4+6x^3-x^2+5x-6\)
Bài 1: Thực hiện phép tính
a)5x3(3x2 – 5x + 3) c)x2 ( 2x3 – 4x + 3)
b) -1\(\dfrac{1}{2}\)x22x – 1)(x2 + 5x – 4) d) (3x – 4)(2x + 4) + (5 – x)(2x2 + 3x – 2)
Bài 1. Tính
a) 3x(2x – 5)
b) (x+1)(x + 4)
c) (7 – x)( x + 7)
d) (𝑥 + 2)2
e) (3 – 2x)2
f) (x – 2)(x2 + 2x + 4)
Giúp em với ạ
Bài 1: Tính
a) ( 3 + 2x )3
b) ( ½ - y )3
c) ( x – 5 ) ( x2 + 5x + 25 )
d) ( 3x + ½ ) ( 9x2 – 3/2*x +1/4 )
Bài 1 Rút gọn biểu thức
a, [(3x - 2)(x + 1) - (2x + 5)(x2 - 1)] : (x + 1)
b, (2x + 1)2 - 2(2x + 1)(3 - x) + (3 - x)2
c, (x - 1)2 - (x + 1) (x2 - x + 1) - (3x + 1)(1 - 3x)
d, (x2 + 1)(x - 3) - (x - 3)(x2 + 3x + 9)
e, (3x +2)2 + (3x - 2)2 - 2(3x + 2)(3x - 2) + x
Bài 2 Phân tích các đa thức sau thành nhân tử
1, 3(x + 4) - x2 - 4x
2, x2 - xy + x - y
3, 4x2 -25 + (2x + 7)(5 - 2x)
4, x2 + 4x - y2 + 4
5, x3 - x2 - x + 1
6, x3 + x2y - 4x - 4y
7, x3 - 3x2 + 1 - 3x
8, 2x2 + 3x - 5
9, x2 - 7xy + 10y2
10, x3 - 2x2 + x - xy2
Bài 1: Rút gọn các biểu thức:
a. (2x - 1)2 - 2(2x - 3)2 + 4
b. (3x + 2)2 + 2(2 + 3x)(1 - 2y) + (2y - 1)2
c. (x2 + 2xy)2 + 2(x2 + 2xy)y2 + y4
d. (x - 1)3 + 3x(x - 1)2 + 3x2(x -1) + x3
e. (2x + 3y)(4x2 - 6xy + 9y2)
f. (x - y)(x2 + xy + y2) - (x + y)(x2 - xy + y2)
g. (x2 - 2y)(x4 + 2x2y + 4y2) - x3(x – y)(x2 + xy + y2) + 8y3
Câu 1 (3,0 điểm): Tính
a) 3x2 (2x2 − 5x − 4)
b) (x + 1)2 + ( x − 2 )(x + 3 ) − 4x
c) (6 x5 y2 − 9 x4 y3 +12 x3 y4 ) : 3x3 y2
Câu 2 (4,0 điểm): Phân tích đa thức thành nhân tử
a) 7x2 +14xy b) 3x + 12 − (x2 + 4x)
c ) x2 − 2xy + y2 − z2 d) x2 − 2x −15
Câu 3 (0,5 điểm): Tìm x
a) 3x2 + 6x = 0 b) x (x − 1) + 2x − 2 = 0
Câu 4 (2,0 điểm): Cho hình bình hành ABCD (AB > BC). Tia phân giác của góc D cắt AB ở E, tia phân giác của góc B cắt CD ở F.
a) Chứng minh DE song song BF
b) Tứ giác DEBF là hình gì?
Câu 5 (0,5 điểm ):
Chứng minh rằng A= n3 + (n+1)3 + (n+2)3 chia hết cho 9 với mọi n ∈ N*
Bài 1: Rút gọn các biểu thức:
a. (2x - 1)2 - 2 (2x - 3)2 + 4
b. (3x + 2)2 + 2 (2 + 3x) (1 - 2y) + (2y - 1)2
c. (x2 + 2xy)2 + 2 (x2 + 2xy) y2 + y4
d. (x - 1)3 + 3x (x - 1)2 + 3x2 (x -1) + x3
e. (2x + 3y) (4x2 - 6xy + 9y2)
f. (x - y) (x2 + xy + y2) - (x + y) (x2 - xy + y2)
g. (x2 - 2y) (x4 + 2x2y + 4y2) - x3 (x – y) (x2 + xy + y2) + 8y3
a) -(x-y)(x2+xy-1)
b) x2(x-1)-(x2+1)(x-y)
c) (3x-2)(2x-1)+(-5x-1)(3x+2)
d) (3x-5)(2x+11)-(2x3)(3x+7)
Bài 2: Tính giá trị biểu thức
C=x(x2-y)-x2(x+y)+y(x2-x) tại x=1/2, y=-1
tìm x:
a)3(2x-3)+2(2-x)=-3
b)2x(x2-2)+x2(1-2x)-x2=-12
c)3x(2x+3)-(2x+5)(3x-2)=8
d)4x(x - 1) - 3(x2-5)-x2=(x-3)-(x+4)
e)2(3x-1)(2x+5)-6(2x-1)(x+2)=-6
rút gọn A,B,C
A=(3x+7)(2x+3)-(3x-5)(2x+11)
B=(x2-2)(x2+x-1)-x(x3+x2-3x-2)
C=x(x3+x2-3x-2)-(x2-2)(x2+x-1)