Khanh Tú

Bài 17: Cho hình chóp SABC có đáy ABC là tam giác đều cạnh a, SA = 3a và SA vuông góc với đáy. Gọi H và I lần lượt là trực tâm tam giác ABC và SBC.
a) Chứng minh rằng IH vuông  (SBC).
b) Tính thể tích khối tứ diện IHBC theo a

Nguyễn Việt Lâm
29 tháng 6 2021 lúc 16:42

Ta có: \(\left\{{}\begin{matrix}SA\perp\left(ABC\right)\Rightarrow SA\perp BH\\BH\perp AC\left(\text{H là trực tâm ABC}\right)\end{matrix}\right.\)  \(\Rightarrow BH\perp\left(SAC\right)\Rightarrow BH\perp SC\) (1)

Lại có I là trực tâm SBC \(\Rightarrow BI\perp SC\) (2)

(1);(2) \(\Rightarrow SC\perp\left(BIH\right)\Rightarrow SC\perp IH\) (3)

Gọi M là giao điểm AH và BC \(\Rightarrow\) M là trung điểm BC (do tam giác ABC đều)

Mà SBC cân tại S (dễ dàng chứng minh SB=SC bằng Pitago) \(\Rightarrow SM\) đồng thời là đường cao trong tam giác SBC hay \(I\in SM\)

\(\Rightarrow IH\in\left(SAM\right)\)

\(\left\{{}\begin{matrix}SA\perp\left(ABC\right)\Rightarrow SA\perp BC\\AH\perp BC\left(\text{H là trực tâm ABC}\right)\end{matrix}\right.\) \(\Rightarrow BC\perp\left(SAM\right)\Rightarrow BC\perp IH\) (4)

(3); (4) \(\Rightarrow IH\perp\left(SBC\right)\)

b. 

\(AM=\dfrac{a\sqrt{3}}{2}\) (trung tuyến tam giác đều) \(\Rightarrow SM=\sqrt{SA^2+AM^2}=\dfrac{a\sqrt{39}}{2}\)

ABC đều nên H là trực tâm đồng thời là trọng tâm \(\Rightarrow\dfrac{MH}{AM}=\dfrac{1}{3}\) \(\Rightarrow MH=\dfrac{AM}{3}=\dfrac{a\sqrt{3}}{6}\)

\(\Rightarrow IM=MH.cos\widehat{AMS}=MH.\dfrac{AM}{SM}=\dfrac{a\sqrt{39}}{78}\)

\(V_{IHBC}=\dfrac{IM}{SM}.\dfrac{MH}{AM}.V_{SABC}=\dfrac{1}{117}.\dfrac{1}{3}.3a.\dfrac{a^2\sqrt{3}}{4}=\dfrac{a^3\sqrt{3}}{468}\)


Các câu hỏi tương tự
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Khánh Đoàn Minh
Xem chi tiết
Pham Trong Bach
Xem chi tiết