Bài 15: Cho tam giác ABC vuông tại A, có AC = 20 cm; AB = 15 cm. Gọi M là trung điểm của cạnh BC. Tính độ dài đoạn thẳng MA.
Cho tam giác ABC vuông tại a đường cao AH h thuộc BC biết AB = 15 cm AC = 20 cm .a)tính độ dài đoạn thẳng bc ah.b) kẻ HM vuông góc với AB HN vuông góc với AC chứng minh tam giác ahb đồng dạng với tam giác ACB .C)gọi I là trung điểm của BC k là giao điểm của AE và MN chứng minh AD vuông góc MN tại k.
Bài 5: Cho tam giác ABC vuông tại A,
AB=12 cm BC=13 cm .
Gọi M, N lần lượt là trung
điểm của AB và BC
a) Chứng minh
MN vuông góc AB
b) Tính độ dài MN
Bài 6: Cho tam giác ABC; Gọi M, N, P lần lượt là trung điểm của ba cạnh AB, AC, BC. Gọi I
là giao điểm của AP và MN. C/m: a) IA = IP b) IM = IN.
Bài 7: Cho tam giác ABC cân tại A, đường cao AD, kẻ DH vuông góc AC. Gọi I là trung điểm
của DH, M là trung điểm của HC.
C/m:a) IM vuông góc AD b) AI vuông góc DM.
Cho tam giác ABC vuông tại A. Biết AB = 15 cm, AC = 20 cm. Gọi M, N
lần lượt là trung điểm các cạnh AB, BC.
a) Tính độ dài MN và AN?
b) Gọi D là điểm đối xứng của A qua N. Chứng minh tứ giác ABDC là hình chữ nhật.
c) Gọi E là điểm đối xứng của N qua M. Chứng minh tứ giác ANBE là hình thoi.
Cho tam giác ABC vuông tại A. Biết AB = 15 cm, AC = 20 cm. Gọi M, N lần lượt là trung điểm các cạnh AB, BC.
a) Tính độ dài MN và AN? (1đ)
b) Gọi D là điểm đối xứng của A qua N. Chứng minh tứ giác ABDC là hình chữ nhật.
c) Gọi E là điểm đối xứng của N qua M. Chứng minh tứ giác ANBE là hình thoi.
bài 4: Cho tam giác ABC vuông tại A, đường cao AH.
a) CM tam giác ABH đồng dạng với tam giác CBA
b)Cho BH=4cm, BC=9cm. Tính độ dài đoạn AB
c)Gọi E là điểm tùy ý trên cạnh AB, đường thẳng qua H và vuông góc với HE cắt cạnh AC tại F. CM AE.CH=AH.FC
Cho tam giác ABC vuông tại A và AB = 6 cm, BC =10 cm, phân giác góc B cắt cạnh AC tại D.
a) Tính độ dài cạnh AC.
b) Đường thẳng qua D vuông góc với BC tại H và AB tại K. Chứng minh: Tam giác ADK = Tam giác HDC.
c) Gọi M là trung điểm của CK. Chứng minh: 3 điểm B, D, M thẳng hàng
Bài 1. Cho tam giác ABC có AB cm 16 , BC cm 20 và AC cm 12 . a) Chứng minh : ABC vuông tại A . b) Gọi M là trung điểm của BC . KẻMFAC tại F . Chứng minh :FA = FC . c) Gọi E là trung điểm của AB . Chứng minh : ME AB và tính độdài ME . Bài 2. Cho hình thang ABCD có hai đáy là AB và CD . Gọi E, F, K lần lượt là trung điểm các cạnh AD, BC, BD . a) Chứng minh: EK // AB ; KF // AB và E, F, K thẳng hàng. b) Gọi I là giao điểm EF và AC . Chứng minh : IA = IC . c) Chứng minh : IE = KF và KE = IF. d) Cho biết AB 6 cm ; CD 10 cm . Tính IK.
Cho tam giác ABC có AB = 18 cm, AC = 24 cm, BC = 30 cm. Gọi M là trung điểm BC. Qua M kẻ đg thẳng vuông góc vs BC cắt AC, AB lần lượt ở D, E.
a, CMR: tam giác ABC, tam giác MDC đồng dạng vs nhau.
b, Tính các cạnh tam giác MDC
c, Tính độ dài BE, EC