Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
NGuyễn Ngọc

Bài 116. Cho tam giác ABC có ba góc nhọn, các đường cao AD, BE và CF cắt nhau tại H.

a) Chỉ ra các đường cao của tam giác HBC Từ đó chỉ ra trực tâm của tam giác đó.
b) Chỉ ra trực tâm của các tam giác HAB và HAC

giúp tớ vớii

Đào Mạnh Hưng
27 tháng 4 lúc 12:53

HÌNH NHÉ !

a: Các đường cao của ΔHBC là BF,HD,CE

Vì BF,HD,CE đồng quy tại H

nên H là trực tâm của ΔHBC

b: Xét ΔHAB có

HF\(\perp\)AB

AE\(\perp\)BH tại E

BD\(\perp\)AH tại D

HF,AE,BD đồng quy tại H

Do đó: H là trực tâm của ΔHAB

Xét ΔHAC có

HE\(\perp\)AC tại E

CD\(\perp\)AH tại D

AF\(\perp\)HC tại F

HE,CD,AF đồng quy tại H

Do đó: H là trực tâm của ΔHAC


Các câu hỏi tương tự
Bảo My Yusa
Xem chi tiết
Bảo My Yusa
Xem chi tiết
Đậu Híp
Xem chi tiết
Pham Trong Bach
Xem chi tiết
giang quynh anh
Xem chi tiết
Lê Văn Hảo
Xem chi tiết
Pham Trong Bach
Xem chi tiết
lêgiaminh
Xem chi tiết
Pham Trong Bach
Xem chi tiết
lê đức thắng
Xem chi tiết