Bài 1:
Ta có : \(\left(x^2-1\right)\left(x^2-4\right)\left(x^2-7\right)\left(x^2-10\right)< 0\)
\(\Leftrightarrow\left[\left(x^2-1\right)\left(x^2-10\right)\right].\left[\left(x^2-4\right)\left(x^2-7\right)\right]< 0\)
\(\Leftrightarrow\left(x^4-11x^2+10\right)\left(x^4-11x^2+28\right)< 0\)
Đặt \(y=x^4-11x^2+19\), ta có : \(\left(y-9\right)\left(y+9\right)< 0\)
\(\Leftrightarrow y^2< 81\Leftrightarrow-9< y< 9\) \(\Leftrightarrow\hept{\begin{cases}y>-9\left(1\right)\\y< 9\left(2\right)\end{cases}}\)
Giải (1) được : \(x^4-11x^2+28>0\) \(\Leftrightarrow\left(x^2-7\right)\left(x^2-4\right)>0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2>7\\x^2< 4\end{cases}}\) \(\Leftrightarrow\orbr{\begin{cases}x>\sqrt{7}\\x< -\sqrt{7}\end{cases}}\)hoặc \(-2< x< 2\)
Giải (2) được :
\(\Leftrightarrow\hept{\begin{cases}x^2< 1\\x^2>10\end{cases}}\)(loại) hoặc \(1< x^2< 10\)(nhận)
\(\Rightarrow\hept{\begin{cases}x^2>1\\x^2< 10\end{cases}}\) \(\Leftrightarrow\orbr{\begin{cases}x< -1\\x>1\end{cases}}\)và \(-\sqrt{10}< x< \sqrt{10}\)
\(\Rightarrow\orbr{\begin{cases}-\sqrt{10}< x< -1\\1< x< \sqrt{10}\end{cases}}\)
Kết hợp (1) và (2) : \(-2< x< -1\);;\(1< x< 2\); \(\sqrt{7}< x< \sqrt{10}\); \(-\sqrt{10}< x< -\sqrt{7}\)
Suy ra các giá trị nguyên của x là : \(x\in\left\{-3;3\right\}\)
Bài 1:
Có: \(x^2-10< x^2-7< x^2-4< x^2-1\)
Để tích trên < 0
: \(\left(x^2-1\right);\left(x^2-4\right);\left(x^2-7\right)\)cùng dương và \(\left(x^2-10\right)\)âm
\(\Rightarrow x^2-10< 0\)và\(x^2-7>0\)
\(\Rightarrow x^2< 10\)và \(x^2>7\)
\(\Rightarrow7< x^2< 10\)
\(\Rightarrow x^2=9\Rightarrow x=+;-3\)
Câu hỏi của Bui Cam Lan Bui - Toán lớp 7 - Học toán với OnlineMath
2) Ta chứng minh bất đẳng thức: |x| + |y| ≥ |x+ y|
Theo định nghĩa giá trị tuyệt đối ta có:
- |x | ≤ x ≤ |x|
- |y| ≤ y ≤ |y|
Cộng từng vế bất đẳng thức trên ta có: - |x| - |y| ≤ x+ y ≤ |x| + |y| => - (|x| + |y|) ≤ x+ y ≤ |x| + |y|
=> |x + y | ≤ |x| + |y|. Dấu "=" xảy ra <=> x; y cùng dấu
*) Áp dụng bất đẳng thức trên ta có: |x| + |y| + |z| ≥ |x+ y| + |z| ≥ |x+ y + z|
=> |x|+ |y| + |z| + |t| ≥ |x+ y + z| + |t| ≥ |x+ y + z+ t|
Dấu "=" xảy ra <=> xy ≥0; (x+ y)z ≥ 0 ; (x+ y + z)t ≥ 0 => x; y; z; t cùng ≥ 0 hoặc x; y ; z; t ≤ 0
Áp dụng vào bài tập ta có
A = |x - a| + |x - b| + |c - x| + |d - x| ≥ |(x - a) + (x - b) + (c - x) + (d - x)| = |c+ d - a - b| = c+ d- a- b ( do a < b < c< d nên c - a > 0 và d - b > 0)
Dấu "=' xảy ra <=> x - a ;x - b; c - x; d - x đều ≥ 0; hoặc x - a; x - b ; c - x; d - x đều ≤ 0
Nếu x - a ;x - b; c - x; d - x đều ≥ 0 thì b ≤ x ≤ c
Nếu x - a; x - b ; c - x; d - x đều ≤ 0 : không có x thỏa mãn
Vậy A nhỏ nhất bằng c+ d - a - b tại các giá trị của x thỏa mãn b ≤ x ≤ c