\(a^2-b^2+a+b=\left(a-b\right)\left(a+b\right)+a+b=\left(a-b+1\right)\left(a+b\right)\)
\(c,\left(a+9\right)^2-36a^2=\left(a+9\right)^2-\left(6a\right)^2\)
\(=\left(a+9-6a\right)\left(a+9+6a\right)\)
a/ x2 - 6 = ( x + \(\sqrt{6}\)) ( x - \(\sqrt{6}\))
b/ ...
c/ ( a + 9 )2 - 36a2 = ( a + 9 )2 - 6a2
= ( a + 9 + 6a ) ( a + 9 - 6a )
= ( 7a + 9 ) ( -5a + 9 )
\(x^2-6=x^2-\left(\sqrt{6}\right)^2=\left(x-\sqrt{6}\right)\left(x+\sqrt{6}\right)\)
\(a^2-b^2+a+b=\left(a-b\right)\left(a+b\right)+\left(a+b\right)=\left(a+b\right)\left(a-b+1\right)\)
\(\left(a+9\right)^2-36a^2=\left(a+9\right)^2-\left(6a\right)^2=\left(a+9-6a\right)\left(a+9+6a\right)=\left(9-5a\right)\left(7a+9\right)\)
a) \(x^2-6=x^2-\left(\sqrt{6}\right)^2=\left(x+\sqrt{6}\right)\left(x-\sqrt{6}\right)\)
b) \(\left(a^2-b^2\right)+\left(a+b\right)=\left(a+b\right)\left(a-b\right)+\left(a+b\right)\)
\(=\left(a+b\right)\left(a-b+1\right)\)
a) \(x^2-6=x^2-\left(\sqrt{6}\right)^2=\left(x+\sqrt{6}\right)\left(x-\sqrt{6}\right)\)
b) \(a^2-b^2+a+b=\left(a+b\right)\left(a-b\right)+\left(a+b\right)=\left(a+b\right)\left(a-b+1\right)\)
c) \(\left(a+9\right)^2-36a^2=\left(a+9\right)^2-\left(6a\right)^2=\left(a+9-6a\right)\left(a+9+6a\right)=\left(9-5a\right)\left(7a+9\right)\)