a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
=>ΔHBA đồng dạng với ΔABC
=>BH/BA=BA/BC
=>BA^2=BH*BC
b: ΔABD vuông tại A có AE là đường cao
nên BE*BD=BA^2=BH*BC
=>BE/BC=BH/BD
=>góc BEH=góc BCD
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
=>ΔHBA đồng dạng với ΔABC
=>BH/BA=BA/BC
=>BA^2=BH*BC
b: ΔABD vuông tại A có AE là đường cao
nên BE*BD=BA^2=BH*BC
=>BE/BC=BH/BD
=>góc BEH=góc BCD
Cho vuông tại A, đường cao AH.
a) Chứng minh tam giác HBA đồng dạng với tam giác ABC và BA^2=BH.BC
b) Trên tia đối của tia AC lấy điểm D sao cho AD < AC. Vẽ tại AE vuông góc với BD. Chứng minh góc BEH = góc ECD
c) Gọi M là giao điểm của EH và AC. Chứng minh MA^2 = MD.MC
2. Cho tam giác ABC vuông tại A (AB<AC), vẽ đường cao AH. Trên đoạn HC lấy điểm M (M không trùng với H,C) từ M vẽ MN vuông góc AC tại N
a) C/M tam giác CMN đồng dạng với tam giác CAH và CA*CN=CH*CM
b) C/m tam giác ADE đồng dạng với tam giác ABC và góc ADE= góc ABC
c) Trên tia đối của tia AC lấy điểm D sao cho AD < AC. Vẽ AE vuông góc BD tại E. Chứng minh góc BEH = góc BCN. Gọi K,F lần lượt là trung điểm BH và BD. I là giao điểm của EK và CF. Chứng minh rằng KC*IE = EF*IC
Cho tam giác ABC vuông tại A (AB<AC) có AH là đường cao.
a) Chứng minh: tam giác HBA đồng dạng với tam giác ABC.
b) Trên tia đối của tia AB lấy điểm D sao cho AD=AB. Gọi M là trung điểm của AH.
Chứng minh: HD . AC = BD . MC
c) Chứng minh: MC vuông góc với DH
Bài 1 :
Cho ABC nhọn (AB < AC). Gọi M là trung điểm của BC. Trên tia AM lấy đi ểm N sao cho M là trung điểm của AN.
a/. Ch/m : ΔAMB = ΔNMC
b/. Vẽ CD \bot AB (D\in AB). So sánh góc ABC và góc BCN. Tính góc DCN.
c/. Vẽ AH \bot BC (H \in BC), trên tia đối của tia HA lấy điểm I sao cho HI = HA.
Ch/m : BI = CN.
BÀI 2 :
Vẽ góc nhọn xAy. Trên tia Ax lấy hai điểm B và C (B nằm giữa A và C). Trên tia Ay lấy hai điểm D và E sao cho AD = AB; AE = AC
a) Chứng minh BE = DC
b) Gọi O là giao điểm BE và DC. Chứng minh tam giác OBC bằng tam giác ODE.
c) Vẽ trung điểm M của CE. Chứng minh AM là đường trung trực của CE.
Bài 3
Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :
a) Tam giác AIB bằng tam giác CID.
b) AD = BC v à AD // BC.
Bài 4.
Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :
a) Tam giác AIB bằng tam giác CID.
b) AD = BC v à AD // BC.
Bài 4.
Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :
a) Tam giác AIB bằng tam giác CID.
b) AD = BC v à AD // BC.
BÀI 4
Cho tam giác ABC có góc A =350 . Đường thẳng AH vuông góc với BC tại H. Trên đường vuông góc với BC tại B lấy điểm D không cùng nửa mặt phẳng bờ BC với điểm A sao cho AH = BD.
a) Chứng minh ΔAHB = ΔDBH.
b) Chứng minh AB//HD.
c) Gọi O là giao điểm của AD và BC. Chứng minh O là trung điểm của BH.
d) Tính góc ACB , biết góc BDH= 350 .
Bài 5 :
Cho tam giác ABC cân tại A và có \widehat{A}=50^0 .
Tính \widehat{B} và \widehat{C}
Lấy D thuộc AB, E thuộc AC sao cho AD = AE. Chứng minh : DE // BC.
Bài 6 :
Cho tam giác ABC cân tại A. Lấy D thuộc AC, E thuộc AB sao cho AD = AE.
Chứng minh : DB = EC.
Gọi O là giao điểm của BD và EC. Chứng minh : tam giác OBC và ODE là tam giác cân.
Chứng minh rằng : DE // BC.
Bài 7
Cho tam giác ABC. Tia phân giác của góc C cắt AB tại D. trên tia đối của tia CA lấy điểm E sao cho CE = CB.
Chứng minh : CD // EB.
Tia phân giác của góc E cắt CD tại F. vẽ CK vuông góc EF tại K. chứng minh : CK Tia phân giác của góc ECF.
Bài 8 :
Cho tam giác ABC vuông tại A có \widehat{B}=60^0 . Vẽ Cx vuông góc BC, trên tia Cx lấy điểm E sao cho CE = CA (CE , CA nằm cùng phía đối BC). trên tia đối của tia BC lấy điểm F sao cho BF = BA. Chứng minh :
Tam giác ACE đều.
A, E, F thẳng hàng.
Cho tam giác ABC vuông tại A ( AB<AC) có AH là đường cao.
a. Chứng minh: Tam giác HBA đồng dạng với ABC
b. Trên tia đối của tia AB lấy D sao cho AD=AB. Gọi M là trung điểm của AH. Chứng minh HD.AC=BD.MC
c. Chứng minh MC vuông góc với DH
Cho tam giác ABC vuông tại A (AB<AC) có AH là đường cao.
a) Chứng minh: Tam giác HBA đồng dạng tam giác ABC
b) Trên tia đối của tia AB lấy điểm D sao cho AD = AB. Gọi M là trung điểm của AH.
Chứng minh: HD.AC = BD.MC
c) Chứng minh: MC vuông góc với DH
Cho tam giác ABC cân tại A với đường cao AH. Từ H vẽ HD vuông góc AB và HE vuông góc AC. Chứng minh AD=AE. Chứng minh AH là trung trực của ED. Lấy điểm F trên tia đối của tia HD sao cho HF=HD. Chứng minh CF vuông góc DH. Gọi K là giao điểm của EH và AB. Xác định trực tâm I của tam giác AHK. Chứng minh KI song song DE.
Cho tam giác ABC vuông tại A có đường cao AH
a) Chứng minh: Tam giác ABC và tam giác HBA đồng dạng rồi suy ra AB^2 = BH . BC
b) CM: Tam giác AHB đồng dạng với tam giác CHA đồng dạng rồi suy ra AH^2 = BH . CH
c) Trên tia đối của tia AC lấy điểm M sao cho AM < AC , vẽ AF vuông góc với BM tại F. Chứng minh góc BFH = góc BAH
Cho tam giác ABC vuông tại A (AB < AC). Đường cao AH. a. Chứng minh tam giác ABC đồng dạng với tam giác HBA. Từ đó suy ra AB²=BH.BC b. Chứng minh AH²=HB.HC c. Trên tia đối của tia AB lấy điểm D sao cho AD
Cho tam giác ABC vuông tại A, đường cao AH,(H thuộc BC)
a)Chứng Minh: Tam giác AHB đồng dạng với tam giác CHA
b) Trên tia đối của tia AC lấy điểm D, vẽ AE vuông góc với BD tại E
Chứng MInh: tam giác AEB đồng dạng với tam giác DAB
c) Chứng minh: BE.BD=BH.BC
d) Chứng Minh: tam giác BHE= tam giác BDC