Cho A(1; 2), B(-3; 1) và C(4; -2). Tìm tập hợp các điểm M sao cho MA2 + MB2= MC2
Cho hai điểm phân biệt A, B cố định và số thực k > 0. I là trung điểm của AB. Tập hợp các điểm M sao cho M A → + M B → = k là:
A. Đường thẳng AB
B. Đường tròn tâm I, bán kính k/2
C. Đường tròn tâm I, bán kính k
D. Đường tròn tâm I, bán kính 2k
Bài 6. Cho các tập hợp: A={a;b;c;d}, B={a;b}. Hãy tìm tất cả các tập X sao cho: B⊂⊂X⊂⊂A.
Cho tam giác ABC
a) Tìm điểm N sao cho \(2\overrightarrow{NA}+\overrightarrow{NB}=3\overrightarrow{BC}\)
b) Tìm tập hợp các điểm M sao cho \(\left|2\overrightarrow{MA}+\overrightarrow{MB}\right|=\left|\overrightarrow{BA}-\overrightarrow{BC}\right|\)
Cho tam giác ABC. Tìm tập hợp các điểm M sao cho\(\left|\overrightarrow{MA}+\overrightarrow{BC}\right|=\left|\overrightarrow{MA}-\overrightarrow{MB}\right|\)
Bài 1:Cho các tập hợp: A={a;b;c;d}, B={a;b}. Hãy tìm tất cả các tập X sao cho: B⊂X⊂A.
Bài 2:Cho các tập hợp: A={1;2;3;4;5}, B={2;4;6}, C={1;3;5}. Thực hiện các phép toán sau:
a)A\(\cup\)B; A\(\cap\)B; B\(\cap\)C
b)(A\(\cup\)B)\(\cap\)C; (A\(\cap\)B)\(\cup\)C
Bài 1: Cho các tập hợp: A={1;2;3}, B={2;3;6;7}, C={3;4;5;8}
a)Tìm A\(\cap\)B, A\(\cup\)B, A\B, B\A
b)Chứng minh A\(\cap\)(B\C)=(A\(\cap\)B)\(A\(\cap\)C)
Bài 2: Cho A là một tập hợp tùy ý. Xác định các tập hợp sau:
a)A\(\cap\)A; A\(\cup\)A; A\(\cap\)\(\varnothing\); A\(\cup\)\(\varnothing\)
b)A\A; A\\(\varnothing\); \(\varnothing\)\A
Cho tứ giác ABCD .M và N là điểm di động trên AB và CD sao cho AM/AB =CN/CD =k. Tìm tập hợp trung điểm I của MN
Cho tam giác ABC và số thực k > 0; G là trọng tâm của tam giác ABC. Tập hợp các điểm M sao cho M A → + M B → + M C → = k là:
A. Đường tròn ngoại tiếp tam giác ABC
B. Đường tròn tâm G, bán kính k/3
C. Đường tròn tâm G, bán kính k
D. Đường tròn tâm G, bán kính 3k