Bài 2:
\(\cos\widehat{A}=\dfrac{3\sqrt{39}}{20}\)
\(\tan\widehat{A}=\dfrac{7}{20}:\dfrac{3\sqrt{39}}{20}=\dfrac{7}{3\sqrt{39}}=\dfrac{7\sqrt{39}}{117}\)
\(\cot\widehat{A}=\dfrac{3\sqrt{39}}{7}\)
Bài 2:
\(\cos\widehat{A}=\dfrac{3\sqrt{39}}{20}\)
\(\tan\widehat{A}=\dfrac{7}{20}:\dfrac{3\sqrt{39}}{20}=\dfrac{7}{3\sqrt{39}}=\dfrac{7\sqrt{39}}{117}\)
\(\cot\widehat{A}=\dfrac{3\sqrt{39}}{7}\)
cho tam giác MNP vuông tại N, biết rằng MP=10dm,MN=6cm.Tính tỉ số lượng giác của hai góc nhọn M và P
cho bt 1 tỉ số góc nhọn anfa tính các tỉ số còn lại
a ) sina=0,8
b) cosa=0,6
c) tana=3
d)cota=2
1) Tính \(\frac{cosa+sina}{cosa-sina}+3\) với \(tana=0,5\)
2) Cho tam giác MNP vuông tại M,đường cao MH.Biết MH=12cm và \(\frac{MN}{MP}=\frac{3}{4}\).Tính NP ?
Bài 1 : cho tam giác ABC vuông tại A , AB = 6 , góc B = alpha, biết tan alpha bằng 5/2 . Tính : a, Cạnh AC b, Cạnh BC Bài 2 : Cho tam giác MNP vuông tại P . Hãy viết các tỉ số lượng giác của góc M và góc N . Biết góc M = 40° .
1.Cho tan giác MNP vuông tại M kẻ MK vuông MP tại K biết KN=20,KP=15 tính MN,MK,MP
2.cho tam giác ABC vuông tại A biết AB=12,BC=20 tính các tỉ số lượng giác của góc C
Cho tam giác ABC vuông tại B, đường cao BH,AB = 9cm, BC = 12cm
a) Tính sinA, cosA, tanA b)Tính các tỉ số lượng giác của góc HBA
Bài 1: Cho ∆MNP vuông tại M; đường cao MI. Biết và MI = 9,8cm a/ Tính MN; MP; NP b/ Tính diện tích tam giác MIP Bài 2: Cho ∆CDE có 3 góc nhọn, đường cao CH. Gọi M, N theo thứ tự là hình chiếu của H trên CD; CE. a/ Chứng minh : CD. CM = CE. CN b/ Chứng minh ∆CMN đồng dạng với ∆CED.
Cho tam giác MNP vuông tại M, MN nhỏ hơn MP, có đường cao MH. Biết rằng: MP = 12cm; NP =15cm, NM = 9cm; PH = 9,6cm
a)Tính các tỉ số lượng giác của góc N
b) Trên cạnh HP lấy điểm K sao cho HN = HK. Qua K vẽ đường thẳng vuông góc với NP và cắt MP tại I. Tính IP.
Cho tam giác MNP vuông tại M có MN = 3cm, MP = 4cm, NP = 5cm. a) Tính các tỉ số lượng giác của MNP · ? b) Kẻ đường cao MH của tam giác MNP . Tính MH, NH?