a: BD+BC=DC
BC+CE=BE
mà BD=CE
nên DC=BE
Xét ΔABE và ΔACD có
AE=AD
\(\widehat{E}=\widehat{D}\)
BE=CD
Do đó: ΔABE=ΔACD
=>\(\widehat{ABC}=\widehat{ACB}\)
=>AB=AC
b: Xét ΔABD và ΔACE có
AB=AC
BD=CE
AD=AE
Do đó: ΔABD=ΔACE
=>\(\widehat{BAD}=\widehat{CAE}\)
Xét ΔAMB vuông tại M và ΔANC vuông tại N có
AB=AC
\(\widehat{BAM}=\widehat{CAN}\)
Do đó: ΔAMB=ΔANC
=>BM=CN
c: Xét ΔMBD vuông tại M và ΔNCE vuông tại N có
BD=CE
MB=NC
Do đó: ΔMBD=ΔNCE
=>\(\widehat{MBD}=\widehat{NCE}\)
mà \(\widehat{IBC}=\widehat{MBD}\)(hai góc đối đỉnh)
và \(\widehat{NCE}=\widehat{ICB}\)(hai góc đối đỉnh)
nên \(\widehat{ICB}=\widehat{IBC}\)
=>IB=IC
Xét ΔABI và ΔACI có
AB=AC
IB=IC
AI chung
Do đó: ΔABI=ΔACI
=>\(\widehat{BAI}=\widehat{CAI}\)
=>AI là phân giác của góc BAC