cho tam giác abc vuông tại a ( ab < ac ) . Vẽ đường cao ah ( H thuộc bc ) lấy điểm D sao cho H là trung điểm của BD .
a , C/M tam giác abc đồng dạng tam giác hba
b , Qua C dựng đường thẳng vuông góc với tia AD , cắt AD tại E . Chứng minh AH . CD = 2AD . HE
Cho tam giác ABC vuông tại A có AB<AC. đường cao AH (H thuộc BC) trên tia HC lấy điểm D sao cho HD =HA. Đường thẳng qua D vuông góc với BC , cắt AC tại E.
a CMR: BE.AC=AD.BC
b; Gọi M là trung điểm của BE, CMR: tam giác BHM đồng dạng với tam giác BEC và tính số đo góc AHM.
Giúp vs mik đang cần gấp
Bài 23 : Cho tam giác ABC vuông tại A ( AB < AC ) . Gọi F là trung điểm của BC , qua F kẻ đường thẳng d vuông góc và BC , đường thẳng d cắt đường thẳng AB , AC lần lượt tại D và E.
a ) Chứng minh : tam giác AED đồng dạng với tam giác PEC
b ) Chứng minh , BF.FC = DF.EF
c ) Tính BC biết DE = 5cm , EF = 4cm
. d ) Gọi K là giao điểm của BE và DC , đường thẳng FK cắt AC tại I. Chứng minh : AC. EI = AE . IC
.Bài 26 : Cho tam giác ABC vuông tại A , đường cao AH . Gọi E , F lần lượt là chân đường vuông góc kẻ tử H đến AB , AC
a ) Chứng minh : AH = EF
b ) Chứng minh : AB^2 = BH.BC
c ) Chứng minh :tam giác HEF đồng dạng vớ itam giác ABC
d ) Kẻ tìa Bx vuông góc BC , Bx cắt đường thẳng AC tại K. Gọi O là giao điểm của EF và AH . Chứng minh : CO đi qua trung điểm của KB .
Bài 27 : Cho tam giác ABC có góc A = 90 độ ; AB = 15cm , AC = 20cm , đường phân giác BD cắt đường cao AH tại K.
a ) Tính BC , AD
b ) Chứng minh tam giác AHB đồng dạng với tam giác CAB ,
c ) Chứng minh : BH.BD = BK.BA , d ) Gọi M là trung điểm của KD . Kẻ tia Bx song song với AM . Tia Bx cắt tia AH tại J , Chứng minh : HK.AJ = AK.HJ .
cho tam giac abc vuông tại a. trên cùng một nửa mặt phẳng bờ bc chứa điểm a vẽ tia bx vuông góc với bc, tia cy vuông góc với bc.gọi m là trung điểm bc.qua a kẻ đường thẳng vuông góc với am cắt bx,cy tại d,e.gọi giao điểm be và cd là i
a) chứng minh ai vuông góc với bc
b) gọi giao điểm ai và bc là h.chứng minh i là trung điểm ah
CHO TAM GIÁC ABC VUÔNG TẠI A, AH LÀ ĐƯỜNG CAO. M LÀ TRUNG ĐIỂM AH. ĐƯỜNG THẲNG VUÔNG GÓC VỚI BC TẠI B CẮT CM Ở D. CMR TAM GIÁC DAB CÂN
Cho tam giác ABC vuông tại A(AB nhỏ hơn AC)
AH là đường cao.M là trung điểm của AH,N là trung điểm của AC.Đường thẳng đi qua M vuông góc với BM cắt AC tại E
a, CMR:∆AMB đồng dạng với∆CNB
b,CMR: A là trung điểm của EN
c,Có BN giao AH tại P,BM giao tại Q. CMR:góc AHQ=góc ACP
Cho tam giác ABC vuông tại A. Kẻ đường cao AH (H thuộc BC). Gọi D là trung điểm của AB. Qua A kẻ đường thẳng vuông góc với CD cắt CD và CB lần lượt tại E và F.
a) CMR: tam giác ADE đồng dạng tam giác CDA.
b) CMR: DE.DC=AB ²/4
c) CMR: DBE= DCB
d) CMR: EF là phân giác BEH.
cho tam giác vuông ABC tại A, đường cao AH. Gọi I là trung điểm của AH. Đường vuông góc với BC tại C cắt đường thẳng BI tại D. CMR: DA=DC
Bài 1: Cho tam giác ABC cân tại A, đường cao AH. Gọi I là trung điểm của AH. E là giao điểm của BI và AC. Tính các độ dài AE và EC biết AH =12cm; BC = 18cm
Bài 2: Cho tam giác ABC (AC > AB), đường cao AH. Gọi D,E,K theo thứ tự là trung điểm của AB, AC,BC. CMR:
a, DE là đường trung trực của AH
b, DEKH là hình thang cân
Bài 3: Cho tam giác ABC cân tại A, đường cao AH. Gọi D là chân đường vuông góc kẻ từ H đến AC. I là trung điểm của HD.
a, Gọi M là trung điểm của CD. CMR: MI vuông góc với AH
b, CM: AI vuông góc với BD