Cho tứ giác ABCD có 2 đg chéo cắt nhau tại O và góc COD =\(\alpha\left(\alpha< 90độ\right)\) . Gọi H,K lần lượt là trực tâm của tam giác AOB,COD . Gọi E,G,I lầng lượt là trọng tâm tam giác ABO,BCO,ADO . Biết AH cắt DK tại F
a. c/m : EG//AC và \(\frac{EG}{EI}=\frac{AB}{BD}\)
b. \(FK=AC.\cot\alpha\)
c. tam giác AEG đồng dạng với tam giác HFK
Cho hình chữ nhật ABCD. Qua B kẻ đường thẳng vuông góc vs đường chéo AC tại H. Gọi E,F,G lần lượt là trung điểm của AH,BH,CD.
a)CM: tứ giác EFCG là hình bình hành.
b) Cho BH=h, góc BAC=\(\alpha\). Tính diện tích ABCD theo h và \(\alpha\)
Bài 1:Cho hcn ABCD .Đường phân giác của góc B cắt đường chéo AC thành 2 đoạn 4\(\frac{2}{7}\)m và 5\(\frac{5}{7}\).Tính các kích thước của hcn
Bài 2: Cho tám giác ABC vuông tại A,vẽ đường cao AH.Chu vi của tam giác ABH là 30cm và chu vi tam giác ACH là 40cm.Tính chu vi của tam giác ABC
Bài 1 : Cho tam giác ABC nhọn nội tiếp ( O ; R ) , H là trực tâm tam giác ABC . Vẽ đường kính AD của ( O ; R ) . Chứng minh :
a, BH // DC
b, tứ giác BHCD là hình bình hành
c, Gọi giao điểm của BH và AC là E , góc BAC = 60* , góc ACB = 45* , AC = 5 cm . Tính diện tích tam giác ABC
Bài 2 : Cho ( O;R ) dây AB không qua tâm . Vẽ dây AC vuông góc với dây AB tại A , C thuộc ( O ) . Chứng minh :
a, B , O , C thẳng hàng
b, diện tích tâm giác ABC nhỏ hơn hoặc bằng \(R^2\)
1. Tam giác ABC vuông góc tại A, đường cao AH. Biết AB:AC=3:4. Và AB+AC=21
a. Tính độ dài các cạnh tam giác ABC
b. Tính độ dài các đoạn AH, BH, CH
2. Cho hình thang ABCD có góc A=góc D= 90 độ; góc B= 60 độ; CD=30 cm; CA vuông góc với CB. Tính diện tích hình thang
1. Tam giác ABC vuông góc tại A, đường cao AH. Biết AB:AC=3:4. Và AB+AC=21
a. Tính độ dài các cạnh tam giác ABC
b. Tính độ dài các đoạn AH, BH, CH
2. Cho hình thang ABCD có góc A=góc D= 90 độ; góc B= 60 độ; CD=30 cm; CA vuông góc với CB. Tính diện tích hình thang
Cho tam giác ABC. Qua B kẻ đường thẳng vuông góc vs đường chéo AC tại H. Gọi E,F,G,H lần lượt là trung điểm của AH,BH,CD.
a)CM: tứ giác EFCG là hình ình hành.
b) Cho BH=h, góc BAC=\(\alpha\). Tính đường chéo AC theo h và \(\alpha\)
Cho tam giác ABC cân tại A có A < 90o. Kẻ BM vuông góc Ac. Cm \(\frac{AM}{MC}=2\left(\frac{AC}{BC}\right)^2-1\)
Gợi ý: Lấy điểm đối xứng vs C qua A, ta đk tam giác DBC vuông tại B.
Bài này hơi khó, các bạn giúp mk nha!
Cho hình vuong ABCD. Gọi I là một điểm nằm giữa A và B. Tia DI và tia Cb cắt nhau ở K. Kẻ đường thẳng qua D, vuông góc với DI. Đường thằng này cắt đường thẳng BC tại L. Chứng minh rằng:
a) Tam giác DIL là một tam giác cân
b) Tổng \(\frac{1}{DI^2}+\frac{1}{DK^2}\) không đổi khi I thay đổi trên AB
Đây là bài 9(SGK-70) lớp 9 nha! Các bn giúp mk!
BÀI 1:
Chứng minh rằng nếu hai cạnh bên của một hình thang cắt nhau thì đường thẳng đi qua giao điểm đó và giao điểm 2 đường chéo sẽ đi qua trung điểm các đáy của hình thang.
BÀI 2:
Tam giác ABC có BC= 2AB và góc ABC=120 độ. Chứng minh rằng đường trung tuyến BM vuông góc AB
BÀI 3:
Cho tam giác ABC vuông tại A. về phía ngoài tam giác lấy AB và BC làm cạnh, dựng các hình vuông ABDE và BCFG. Chứng minh GA vuông góc CD
BÀI 4:
Trên 2 cạnh AB và AC của tam giác ABC ta dựng ra phía ngoài của tam giác các hình vuông ABDE và ACFG ; dựng hình bình hành AEHG. Gọi K là giao điểm của AD và BE . Chứng minh CK vuông góc KH