Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
_Applie05_

Bài 1: Cho hình bình hành ABCD có E là trung điểm AD, F là trung điểm BC. Chứng minh :EA=ED=FB=FC

Bài 2: Tính các góc của hình bình hành 

a) Góc A= 60 độ b) Góc A + Góc C= 140 độc) Góc B - Góc A= 40 độ
Nguyễn Lê Phước Thịnh
19 tháng 11 2023 lúc 12:14

Bài 1:

ABCD là hình bình hành

=>AD=BC(1)

E là trung điểm của AD

=>\(EA=ED=\dfrac{AD}{2}\left(2\right)\)

F là trung điểm của BC

=>\(FB=FC=\dfrac{BC}{2}\left(3\right)\)

Từ (1),(2),(3) suy ra EA=ED=FB=FC

Bài 2:

a: ABCD là hình bình hành

=>\(\widehat{A}+\widehat{B}=180^0\)

=>\(\widehat{B}=180^0-60^0=120^0\)

ABCD là hình bình hành

=>\(\widehat{A}=\widehat{C};\widehat{B}=\widehat{D}\)

\(\widehat{A}=\widehat{C}\)

mà \(\widehat{A}=60^0\)

nên \(\widehat{C}=60^0\)

\(\widehat{B}=\widehat{D}\)

mà \(\widehat{B}=120^0\)

nên \(\widehat{D}=120^0\)

b: ABCD là hình bình hành

=>\(\widehat{A}=\widehat{C}\)

mà \(\widehat{A}+\widehat{C}=140^0\)

nên \(\widehat{A}=\widehat{C}=\dfrac{140^0}{2}=70^0\)

ABCD là hình bình hành

=>\(\widehat{A}+\widehat{B}=180^0\)

=>\(\widehat{B}=180^0-70^0=110^0\)

ABCD là hình bình hành

=>\(\widehat{B}=\widehat{D}\)

mà \(\widehat{B}=110^0\)

nên \(\widehat{D}=110^0\)

c: ABCD là hình bình hành

=>\(\widehat{B}+\widehat{A}=180^0\)

mà \(\widehat{B}-\widehat{A}=40^0\)

nên \(\widehat{B}=\dfrac{180^0+40^0}{2}=110^0;\widehat{A}=\dfrac{180^0-40^0}{2}=70^0\)

ABCD là hình bình hành

=>\(\widehat{A}=\widehat{C};\widehat{B}=\widehat{D}\)

=>\(\widehat{C}=70^0;\widehat{D}=110^0\)


Các câu hỏi tương tự
hoàng hà my
Xem chi tiết
mai thuy phuong
Xem chi tiết
qnga
Xem chi tiết
hải pro
Xem chi tiết
Vũ Nhật Mai
Xem chi tiết
lomg vu
Xem chi tiết
Nguyễn Thị Ngọc Mai
Xem chi tiết
Xem chi tiết
~ ~ ~Bim~ ~ ~♌ Leo ♌~...
Xem chi tiết