\(\Leftrightarrow\left\{{}\begin{matrix}4x+2y=4\\x+2y=1-3m\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4x+2y=4\\3x=3+3m\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=m+1\\y=-2m\end{matrix}\right.\)
\(A=x^2+y^2=\left(m+1\right)^2+\left(-2m\right)^2=5m^2+2m+1\)
\(A=5\left(m+\dfrac{1}{5}\right)^2+\dfrac{4}{5}\ge\dfrac{4}{5}\)
Dấu "=" xảy ra khi \(m+\dfrac{1}{5}=0\Leftrightarrow m=-\dfrac{1}{5}\)