Ta có m − 1 x − m y = 3 m − 1 2 x − y = m + 5 ⇔ y = 2 x − m − 5 m − 1 x − m 2 x − m − 5 = 3 m − 1
⇔ y = 2 x − m − 5 m − 1 x − 2 m x + m 2 + 5 m = 3 m − 1 ⇔ y = 2 x − m − 5 − m − 1 x = − m 2 − 5 m + 3 m − 1 ⇔ y = 2 x − m − 5 m + 1 x = m 2 + 2 m + 1 ⇔ y = 2 x − m − 5 1 m + 1 x = m + 1 2 2
Để hệ phương trình có nghiệm duy nhất thì phương trình (2) có nghiệm duy nhất hay m ≠ − 1
Khi đó từ phương trình (2) ta suy ra x = m + 1 2 m + 1 = m + 1 , thay x = m + 1vào phương trình (1) ta được y = 2 (m + 1) – m – 5 = m – 3
Vậy với m ≠ − 1 thì hệ đã cho có nghiệm duy nhất (x; y) = (m + 1; m – 3)
Ta xét S = x 2 + y 2 = ( m + 1 ) 2 + ( m – 3 ) 2 = m 2 + 2 m + 1 + m 2 − 6 m + 9
= 2 m 2 – 4 m + 10 = 2 ( m 2 – 2 m + 1 ) + 8 = 2 ( m – 1 ) 2 + 8
Vì ( m – 1 ) 2 ≥ 0 ; ∀ m ⇒ 2 ( m – 1 ) 2 + 8 ≥ 8 ; ∀ m
Hay S ≥ 8 ; ∀ m . Dấu “=” xảy ra khi m–1 = 0 ⇔ m=1 (TM)
Vậy m = 1 là giá trị cần tìm
Đáp án: A