Bài 1. Cho đường tròn (O), dây cung CD. Qua O vẽ OH ^ CD tại H, cắt tiếp tuyến tại C của đường tròn (O) tại M. Chứng minh MD là tiếp tuyến của (O).
Bài 2. Cho nửa đường tròn tâm O, đường kính AB. Vẽ các tia Ax ^ AB và By ^ AB ở cùng phía nửa đường tròn. Gọi I là một điểm trên nửa đường tròn. Tiếp tuyến tại I cắt Ax tại C và By tại D. Chứng minh rằng AC + BD = CD.