a) Áp dụng định lí Pytago vào ΔAHB vuông tại H, ta được:
\(AB^2=AH^2+HB^2\)
\(\Leftrightarrow AB^2=6^2+8^2=100\)
hay AB=10(cm)
Áp dụng định lí Pytago vào ΔAHC vuông tại H, ta được:
\(AC^2=AH^2+HC^2\)
\(\Leftrightarrow AC^2=6^2+10^2=136\)
hay \(AC=2\sqrt{34}cm\)
Ta có: AB=10cm
\(AC=2\sqrt{34}cm\)
mà \(10cm< 2\sqrt{34}cm\)
nên AB<AC