Tổng B có: (2n+1-1):2=n(số hạng)
=>B=(2n+1+1).n:2=(2n+2).n:2=2.(n+1).n:2=n.(n+1)
Vậy B=n.(n+1)
Tổng B có: (2n+1-1):2=n(số hạng)
=>B=(2n+1+1).n:2=(2n+2).n:2=2.(n+1).n:2=n.(n+1)
Vậy B=n.(n+1)
Chứng minh rằng:
a)\(\frac{1.3.5...39}{21.22.23...40}=\frac{1}{2^{20}}\)
b)\(\frac{1.3.5...\left(2n-1\right)}{\left(n+1\right)\left(n+2\right)\left(n+3\right)...2n}=\frac{1}{2^n}\)với n thuộc N*
cho f(x)=(x2+x+1)2+1 với mọi x thuộc N.
a)tìm x để f(x) là số tự nhiên
b)thu gọn:
Pn=\(\frac{f\left(1\right).f\left(3\right).....f\left(2n-1\right)}{f\left(2\right).f\left(4\right).....f\left(2n\right)}\) với n thuộc N*
cho \(A=\frac{7}{3}.\frac{37}{3^2}....\frac{6^{2n}+1}{3^{2n}}\)và \(B=\left(1+\frac{1}{3}\right)\left(1+\frac{1}{3^2}\right)...\left(1+\frac{1}{3^{2n}}\right)\)với n thuộc N
a) Chứng minh: 5A-2B là số tự nhiên
b) Chứng minh với mọi số tự nhiên n khác 0 thì 5A-2B chia hết cho 45
Tính \(D=\left(1-\frac{4}{1}\right)\left(1-\frac{4}{9}\right)...\left(1-\frac{1}{\left(2n-1\right)^2}\right)\)với n thuộc N, n>1
1)CMR:
a) \(\frac{1.3.5...39}{21.22.23...40}=\frac{1}{2^{20}}\)
b) \(\frac{1.3.5...\left(2n-1\right)}{\left(n+1\right).\left(n+2\right)\left(n+3\right)...2n}=\frac{1}{2^n}\)( n thuộc N* )
Chứng minh rằng:
a,\(\frac{1.3.5...39}{21.22.23...40}=\frac{1}{2^{20}}\)
b,\(\frac{1.3.5...\left(2n-1\right)}{\left(n+1\right)\left(n+2\right)\left(n+3\right)...2n}=\frac{1}{2^n}\)
Biết rằng n thuộc N*
1.Tìm n thuộc N biết:
a)\(\left(2n+1\right)^3\)=27
b)\(\left(n-2\right)^2\)=n-n
a, Tính: M = \(1+\dfrac{1}{5}+\dfrac{3}{35}+...+\dfrac{3}{9603}+\dfrac{3}{9999}\)
b, Chứng tỏ: S = \(\dfrac{1}{4^2}+\dfrac{1}{6^2}+\dfrac{1}{8^2}+...+\dfrac{1}{\left(2n\right)^2}< \dfrac{1}{4}\left(n\in N,n\ge2\right)\)
Bài 1 : Tìm \(n\in N\)
a) \(\frac{4n-1}{3n+2}\in N\) b) \(\frac{5n-7}{2n+1}\in N\)
Bài 2 : Tìm \(n\in N\)
a) \(\left(n+2\right)\cdot\left(2n+5\right)=21\) b) \(\left(2n-3\right)\cdot\left(n-5\right)=22\)
Bài 3 : Tìm \(x.y\in N\)
a) \(\left(2n+1\right)\cdot\left(3y-5\right)=12\) b) \(\left(3x-1\right)\cdot\left(4y+3\right)=14\)
Cách bạn giải ra giúp mình nha !