a: \(\dfrac{x}{2}+\dfrac{1-x}{3}>0\)
=>3x+2(1-x)>0
=>3x+2-2x>0
=>x+2>0
=>x>-2
b: (x-9)^2-x(x+9)<0
=>x^2-18x+81-x^2-9x<0
=>-27x+81<0
=>-27x<-81
=>x>3
a: \(\dfrac{x}{2}+\dfrac{1-x}{3}>0\)
=>3x+2(1-x)>0
=>3x+2-2x>0
=>x+2>0
=>x>-2
b: (x-9)^2-x(x+9)<0
=>x^2-18x+81-x^2-9x<0
=>-27x+81<0
=>-27x<-81
=>x>3
a,(x-3)ngũ2+2x-6=0
b,x+3/x-3+48/9-x ngũ2=x-3/x+3
a,3(x+2)=5x+8
b,(2x-1)ngũ2=9
c,2x/x+2+2/x-2=x ngũ2+4/x ngũ2-4
giải pt
căn(9 nhân(x-1)^2) -12 =0
b, căn(4 nhân (3-x))=16
Dùng công thức nghiệm của phương trình bậc hai để giải các phương trình sau:
a ) 2 x 2 − 7 x + 3 = 0 b ) 6 x 2 + x + 5 = 0 c ) 6 x 2 + x − 5 = 0 d ) 3 x 2 + 5 x + 2 = 0 e ) y 2 − 8 y + 16 = 0 f ) 16 z 2 + 24 z + 9 = 0
Bài : Rút gọn biểu thức sau
a) (1-\(\sqrt{x}\) ) (1+\(\sqrt{x}\) +x) - \(\sqrt{x^3}\) với x ≥ 0
b. ( \(\dfrac{1-\sqrt{a}}{1-a}\))2 . (\(\dfrac{1-a\sqrt{a}}{1-\sqrt{a}}\)+ \(\sqrt{a}\) với a ≥ 0 , a≠0
(2 điểm) Cho hai biểu thức $A=\dfrac{\sqrt{x}}{\sqrt{x}+3}$ và $B=\dfrac{2 \sqrt{x}}{\sqrt{x}-3}-\dfrac{3 x+9}{x-9}$ với $x \geq 0, x \neq 9$.
1) Tính giá trị của biểu thức $A$ khi $x=16$.
2) Chứng minh $A+B=\dfrac{3}{\sqrt{x}+3}$.
a : \(\dfrac{\sqrt{x}}{\sqrt{x}+3}+\dfrac{2\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+9}{x-9}\)với x ≥ 0 x ≠ 9
b : \(\dfrac{3}{\sqrt{x}-1}-\dfrac{\sqrt{x}+5}{x-1}\)với x ≥ 0 x ≠ 1
c : \(\left(\dfrac{15-\sqrt{x}}{x-25}+\dfrac{2}{\sqrt{x}+5}\right):\dfrac{\sqrt{x}+1}{\sqrt{x}-5}\)với x ≥ 0 x ≠ 0
d : \(\dfrac{3\sqrt{x}+1}{x+2\sqrt{x}-3}-\dfrac{2}{\sqrt{x}+3}\)với x ≥ 0 x ≠ 1
Cho 2 biểu thức
A=2√x/x+3
B=√x+1/√x-3 +7√x+3/9+x
(đk x>= 0,x khác 9)
a)Tính giá trị tại của biểu thức A khi x=16
b) Rút gọn P=A+B
Câu 1 (1,5 điểm). Cho các biểu thức A = 2√x +1/√x -3 và
B =2x+36/x-9 - 9/√x -3 - √x/√x +3 (với x≥0;x≠ 9)
a) Tính giá trị của A khi x = 49
b) Rút gọn biểu thức B.
c) Đặt P = A.B. Tìm tất cả các giá trị của x để P > 1.