C : \(0,2.\sqrt{\left(-10\right)^2.3}+2\sqrt{\left(\sqrt{3}-\sqrt{5}\right)^2}=10.0,2\sqrt{3}+2l\sqrt{3}-\sqrt{5}l=2\sqrt{3}+2\sqrt{5}-2\sqrt{3}=2\sqrt{5}\)
C : \(0,2.\sqrt{\left(-10\right)^2.3}+2\sqrt{\left(\sqrt{3}-\sqrt{5}\right)^2}=10.0,2\sqrt{3}+2l\sqrt{3}-\sqrt{5}l=2\sqrt{3}+2\sqrt{5}-2\sqrt{3}=2\sqrt{5}\)
Rút gọn các biểu thức sau:
a) \(0,2\sqrt{\left(-10\right)^2.3}+2\sqrt{\left(\sqrt{3}-\sqrt{5}\right)^2}\) b) \(\left(15\sqrt{50}+5\sqrt{200}-3\sqrt{450}\right):\sqrt{10}\)
c) \(\left(\frac{2\sqrt{3}-\sqrt{6}}{\sqrt{8}-2}-\frac{\sqrt{216}}{3}\right):\sqrt{6}\) d) \(\frac{\sqrt{5+2\sqrt{6}}+\sqrt{8-2\sqrt{15}}}{\sqrt{7+2\sqrt{10}}}\)
rút gọn
a) \(\left(-7\sqrt{7}\right)\left(-2\sqrt{8}\right)\)
b) \(-\sqrt{33}.3\sqrt{3}\)
c) \(\left(3\sqrt{5}\right).\left(-10\sqrt{3}\right)\)
d) \(\dfrac{1}{2}\sqrt{5}.\left(-6\sqrt{2}\right)\)
e) \(\dfrac{2}{3}\sqrt{7}.\left(-\dfrac{9}{16}\sqrt{3}\right)\)
f) \(15\sqrt{6}:5\sqrt{3}\)
g) \(-25\sqrt{12}:\left(-5\sqrt{6}\right)\)
h) \(36\sqrt{8}:12\sqrt{2}\)
i) \(4\sqrt{27}:\left(-2\sqrt{3}\right)\)
a)\(\sqrt{\left(2\sqrt{2}-3\right)^2+\sqrt{15}}\)
b)\(\sqrt{\left(\sqrt{10}-3\right)}^2+\sqrt{\left(\sqrt{10}-4\right)^2}\)
c)\(11+6\sqrt{2}=\left(3+\sqrt{2}\right)^2\)
d)\(\sqrt{11}+6\sqrt{2}+\sqrt{11-6\sqrt{2}=6}\)
1)\(\left(3+\sqrt{5}\right)\left(\sqrt{10}-\sqrt{2}\right)\sqrt{3-\sqrt{5}}=8\)
2)\(\sqrt{\sqrt{2}+1}-\sqrt{\sqrt{2}-1}=\sqrt{2\left(\sqrt{2}-1\right)}\)
tính giá trị của các biểu thức sau:
a/ \(A=\sqrt{11-2\sqrt{10}}\)
b/ \(B=\left(\sqrt{28}-2\sqrt{4}+\sqrt{7}\right)\sqrt{7}+7\sqrt{7}\)
c/ \(C=\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}\)
d/ \(D=0,2\sqrt{\left(-10\right)^2\times3}+2\sqrt{\left(\sqrt{3}-\sqrt{5}\right)^2}\)
a)\(\left(\sqrt{3}-\sqrt{2}+1\right).\left(\sqrt{3}-1\right).\)
b)\(\sqrt{15-6\sqrt{6}}+\sqrt{33-12\sqrt{6}}\)
c)\(2\sqrt{8\sqrt{3}}-2\sqrt{5\sqrt{3}}-3\sqrt{20\sqrt{3}}\)
d)\(\left(\sqrt{8}-5\sqrt{2}+\sqrt{20}\right).\sqrt{5}-\left(3.\sqrt{\frac{1}{10}}+10\right)\)
giúp mk zới:((
Rút gọn các biểu thức sau:
a) \(\left(\sqrt{8}-3\sqrt{2}+\sqrt{10}\right)\left(\sqrt{2}-3\sqrt{0,4}\right)\) b) \(\left(\sqrt{28}-2\sqrt{14}+\sqrt{7}\right).\sqrt{7}+7\sqrt{8}\)
c) \(2\sqrt{\left(\sqrt{2}-3\right)^2}+\sqrt{2\left(-3\right)^2}-5\sqrt{\left(-1\right)^4}\) d) \(\left(\frac{\sqrt{14}-\sqrt{7}}{1-\sqrt{2}}+\frac{\sqrt{15}-\sqrt{5}}{1-\sqrt{3}}\right):\frac{1}{\sqrt{7}-\sqrt{5}}\)
Tính :
a)\(\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}\)
b)\(\sqrt{3-\sqrt{5}}\left(\sqrt{10}-\sqrt{2}\right)\left(3+\sqrt{5}\right)\)
c) \(\frac{\sqrt{\sqrt{5}+2}+\sqrt{\sqrt{5}-2}}{\sqrt{\sqrt{5}}+1}-\sqrt{3-2\sqrt{2}}\)
Chứng minh
\(a,\sqrt{9-4\sqrt{5}}-\sqrt{5}=-2\)
\(b,\frac{\sqrt{2}+1}{\sqrt{2}-1}=3+2\sqrt{2}\)
\(c,2\sqrt{2}\left(3-\sqrt{2}\right)+\left(1+2\sqrt{2}\right)^2-2\sqrt{6}=9\)
\(d,\sqrt{\frac{4}{\left(2-\sqrt{5}\right)^2}}-\sqrt{\frac{4}{\left(2+\sqrt{5}\right)^2}}=8\)
\(e,\left(3+\sqrt{5}\right)\left(\sqrt{10}-\sqrt{2}\right)\sqrt{3-\sqrt{5}}=8\)
\(f,\sqrt{\sqrt{2}+1}-\sqrt{\sqrt{2}-1}=\sqrt{2\left(\sqrt{2}-1\right)}\)