=(60+3)(60-3)
=60^2-3^2
=3591.
@lili hơi tắt và khó hiểu
thì áp dụng đúng cái hàng đẳng thức trên còn j ??
Ta có:
63.57=(60+3)(60-3)
Áp dụng HĐT trên
=>(60+3)(60-3)=602-32
=3600-9=3591
=(60+3)(60-3)
=60^2-3^2
=3591.
@lili hơi tắt và khó hiểu
thì áp dụng đúng cái hàng đẳng thức trên còn j ??
Ta có:
63.57=(60+3)(60-3)
Áp dụng HĐT trên
=>(60+3)(60-3)=602-32
=3600-9=3591
tính: \(\left(2a-b\right)^2-2\times\left(2a-b\right)\times\left(a+b\right)+\left(a+b\right)^2\)
ÁP DỤNG HẰNG ĐẲNG THỨC ĐÁNG NHỚ
Áp dụng hằng đẳng thức khai triển biểu thức sau:
a, \(\left(3x^2-2y^3\right)^2\)
b, \(\left(-2x^2-3\right)^2\)
Áp dụng hằng đẳng thức khai triển biểu thức sau:
a, \(\left(2x^2-1\right)^2\)
b, \(\left(\dfrac{1}{2}x+3y^2\right)^2\)
Chứng minh đẳng thức sau :
a) \(x^2+y^2=\left(x+y\right)^2-2xy\)
b)\(\left(a+b\right)^2-\left(a-b\right)\cdot\left(a+b\right)=2b\left(a+b\right)\)
c)\(\left(a+b\right)^2-\left(a-b\right)^2=ab\)
Cho a+b+c\(a^3+b^3+c^3=3abc\) áp dụng tính B=\(\frac{\left(a^2-b^2\right)^3+\left(b^2-c^2\right)^3+\left(c^2-a^2\right)^3}{\left(a-b\right)^3+\left(b-c\right)^3+\left(c-a\right)^3}\)
Cho các số dương a, b, c, d có tổng bằng 2. Tìm giá trị nhỏ nhất của biểu thức :\(A=\dfrac{\left(a+b+d\right)\left(a+b\right)}{abcd}\)
( Gợi ý : Áp dụng \(\left(a+b\right)^2\ge4ab\) )
Áp dụng hằng đẳng thức, khai triển các biểu thức sau:
a, \(\left(2x+y+3\right)^2\)
b, \(\left(x-2y+1\right)^2\)
c, \(\left(x^2-2xy^2-3\right)^2\)
Ứng dụng các hằng đẳng thức đáng nhớ để thực hiện phép tính:
a)\(\left(m+n\right)\left(m^2-mn+n^2\right)\)
b)\(\left(a-b-c\right)^2-\left(a-b+c\right)^2\)
c)\(\left(1+x+x^2\right)\left(1-x\right)\left(1+x\right)\left(1-x+x^2\right)\)
Cho 2 số a,b thỏa mãn đẳng thức:
\(a^3+b^3+3\left(a^2+b^2\right)+4\left(a+b\right)+4=0\)
Tính giá trị của biểu thức \(M=2018\left(a+b\right)^2\)