a: \(\Rightarrow10x^2+9x-\left(10x^2+15x-2x-3\right)=8\)
\(\Leftrightarrow10x^2+9x-10x^2-13x+3=8\)
=>-4x=5
hay x=-5/4
b: \(\Leftrightarrow21x-15x^2-35+25x+15x^2-10x+6x-4-2=0\)
=>42x=41
hay x=41/42
`a)(10x+9)x-(5x-1)(2x+3)=8`
`<=>10x^2+9x-10x^2-15x+2x+3=8`
`<=>-4x=5`
`<=>x=-5/4` Vậy `S={-5/4}`
`b)(3x-5)(7-5x)+(5x+2)(3x-2)-2=0`
`<=>21x-15x^2-35+25x+15x^2-10x+6x-4-2=0`
`<=>42x=41`
`<=>x=41/42` Vậy `S={41/42}`
a: ⇒10x2+9x−(10x2+15x−2x−3)=8⇒10x2+9x−(10x2+15x−2x−3)=8
⇔10x2+9x−10x2−13x+3=8⇔10x2+9x−10x2−13x+3=8
=>-4x=5
hay x=-5/4
b: ⇔21x−15x2−35+25x+15x2−10x+6x−4−2=0⇔21x−15x2−35+25x+15x2−10x+6x−4−2=0
=>42x=41
hay x=41/42
\(\left(10x+9\right)x-\left(5x-1\right)\left(2x+3\right)=8\)
\(10x^2+9x-10x^2-13x+3=8\)
\(-4x=8-3\)
\(-4x=5\)
\(x=-\dfrac{5}{4}\)
\(\left(3x-5\right)\left(7-5x\right)+\left(5x+2\right)\left(3x-2\right)-2=0\)
\(-15x^2+46x-35+15x^2-4x-4-2=0\)
\(42x-41=0\)
42x=41
x=\(\dfrac{41}{42}\)