cho 3 số dương a,b,c thỏa mãn a+b+c=1
cm:\(A=\frac{a+b}{abc}\ge16\)
ai giúp dùm nha
Cho a,b,c dương thỏa mãn \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\). Chứng minh \(\left(\frac{1}{a}+\frac{1}{b}\right)abc\ge16\)
Cho a;b;c là các số thực dương thỏa mãn a+b+c=a*b*c .Cmr a+b+c >hoặc bằng (1/a+1/b+1/c) . Giúp mình giải bài này với nhanh lên đâỳ có đầy đủ cách làm
Ai giải rõ bài này hộ em với ạ.
Cho 2 số thực dương a,b thỏa mãn : a+b = \(\frac{3}{2}\).Tìm GTNN của :P =\(\frac{2}{a}+\frac{1}{2b}\)
Cho a,b,c là các số thực dương thỏa mãn abc = 1
CMR: \(\frac{1}{a^2+2b^2+3}+\frac{1}{b^2+2c^2+3}+\frac{1}{c^2+2a^2+3}\le\frac{1}{2}\)
Mong cô Chi tick cho bn nào làm được câu này để giúp các bn có động lực giúp em với ạ:))
Ai giải giúp mk với bt khó v :<
À mà chỉ giải bằng bđt AM-GM nhé, nếu có thêm bổ đề thì chứng minh chi tiết hộ mk :)
1. Cho ba số thực dương a,b,c thoả mãn a+b+c=3
CMR : \(a.\sqrt[3]{3-b+c}+b.\sqrt[3]{3-c+a}+c.\sqrt[3]{3-a+b}\le3.\sqrt[3]{3}\)
2. Cho 3 số thực dương a,b,c thoả mãn abc=2
CMR: \(a^3+b^3+c^3\ge a\sqrt{b+c}+b\sqrt{c+a}+c\sqrt{a+b}\)
3. Cho 2 số thực dương x,y thoả mãn x+y+xy=3
CMR: \(\sqrt{\frac{x^2}{x^2+3}}+\sqrt{\frac{y^2}{y^2+3}}\le1\)
Bài 2:cho a ,b ,c là 3 số dương thỏa mãn abc=1 .Chứng minh rằng
\(\frac{1}{a^3\left(b+c\right)}+\frac{1}{b^3\left(c+a\right)}+\frac{1}{c^3\left(a+b\right)}\ge\frac{3}{2}\)
Bài 1:
Với a, b, c là các số thực dương, chứng minh rằng: \(\frac{1}{a\sqrt{3a+2b}}+\frac{1}{b\sqrt{3b+2c}}+\frac{1}{c\sqrt{3c+2a}}\ge\frac{3}{\sqrt{5abc}}\)
Bài 2:
Với x, y là các số thực dương, tìm giá trị nhỏ nhất của \(G=\sqrt{\frac{x^3}{x^3+8y^3}}+\sqrt{\frac{4y^3}{y^3+\left(x+y\right)^3}}\)
Bài 3:
Với a, b, c là các số thực dương, chứng minh rằng: \(\sqrt{\frac{a+b}{c}}+\sqrt{\frac{b+c}{a}}+\sqrt{\frac{c+a}{b}}\ge2\left(\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{c+a}}+\sqrt{\frac{c}{a+b}}\right)\)
Bài 4:
Với a, b, c là các số thực dương thỏa mãn abc = 1, chứng minh rằng: \(\frac{a}{\sqrt{b^2+3}}+\frac{b}{\sqrt{c^2+3}}+\frac{c}{\sqrt{a^2+3}}\ge\frac{3}{2}\)
Ai nhanh và đúng, mình sẽ đánh dấu và thêm bạn bè nhé. Thanks. Làm ơn giúp mình !!! PLEASE!!!
Cho a,b > 0 thỏa mãn a+b=1.Chứng minh rằng
a, \(a^3\)+\(b^3\)\(\ge\frac{1}{4}\)
b,\(\frac{1}{a^3+b^3}\)+\(\frac{3}{ab}\ge16\)