bạn ghi đề sai phải ko? Phải là căn trong căn chứ. sao lại có \(\sqrt{3}+\sqrt{3}+\sqrt{3}...\) hay là \(\sqrt{3+\sqrt{3+\sqrt{.....+\sqrt{3}}}}\)
bạn ghi đề sai phải ko? Phải là căn trong căn chứ. sao lại có \(\sqrt{3}+\sqrt{3}+\sqrt{3}...\) hay là \(\sqrt{3+\sqrt{3+\sqrt{.....+\sqrt{3}}}}\)
Cho biểu thức : \(A=\frac{3-\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}}{6-\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}}\),Biết tử số có 2010 dấu căn;mẫu số có 2009 dấu căn
Chứng minh \(A<\frac{1}{4}\)
Cho biểu thức \(A=\frac{3-\sqrt{3+\sqrt{3+...+\sqrt{3}}}}{6-\sqrt{3+\sqrt{3+...+\sqrt{3}}}}\) tử có 2010 dấu căn, mẫu có 2009 dấu căn. Chứng minh A < 1/4
Chứng minh rằng \(\frac{3-\sqrt{3+\sqrt{3+\sqrt{3+...\sqrt{3}}}}}{6-\sqrt{3+\sqrt{3+\sqrt{3+...\sqrt{3}}}}}
Bài 1
\(P=\frac{3-\sqrt{3+\sqrt{3+\sqrt{3+.....+\sqrt{3}}}}}{6-\sqrt{3+\sqrt{3+\sqrt{3+.....+\sqrt{3}}}}}\)(tử có 2007 dấu căn; mẫu có 2006 dấu căn)
\(F=\frac{2-\sqrt{2+\sqrt{2+\sqrt{2+.....+\sqrt{2}}}}}{2-\sqrt{2+\sqrt{2+\sqrt{2+.....+\sqrt{2}}}}}\)(TỬ CÓ N DẤU CĂN; MẪU CÓ N-1 DẤU CĂN)
Cho biểu thức:
\(A=\frac{3-\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}}{6-\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}}\)
Tử thức có 2019 dấu căn,mẫu thức có 2018 dấu căn.CMR: A không thể là 1 số nguyên
cmr B = \(\frac{3-\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}}{6-\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}}\)\(< \frac{1}{5}\)
( tử số có 2018 dấu căn , mẫu số có 2017 dấu căn )
Rút gọn các biểu thức sau:
a,\(A=\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+....+\frac{1}{2010\sqrt{2009}+2009\sqrt{2010}}\)
b,\(B=\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+....+\frac{1}{\sqrt{2006}+\sqrt{2007}}\)
c,\(C=\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+4}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
A=\(\frac{3+\sqrt{3+\sqrt{3+\sqrt{3+....+\sqrt{3}}}}}{6.\sqrt{3+\sqrt{3+\sqrt{3+....+\sqrt{3}}}}}\)
có 2013 dấu căn
CM : A<\(\frac{1}{2}\)
tính U =(\(\left(\frac{1}{3\sqrt{2}+2\sqrt{3}}+\frac{1}{4\sqrt{3}+3\sqrt{4}}+...+\frac{1}{2010\sqrt{2009}+2009\sqrt{2010}}\right)\)