a: Thay x=16 vào A, ta được:
\(A=\dfrac{2}{4-1}=\dfrac{2}{3}\)
b: \(A+B=\dfrac{2}{\sqrt{x}-1}+\dfrac{2}{\sqrt{x}+1}-\dfrac{5-\sqrt{x}}{x-1}\)
\(=\dfrac{2}{\sqrt{x}-1}+\dfrac{2}{\sqrt{x}+1}+\dfrac{\sqrt{x}-5}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{2\left(\sqrt{x}+1+\sqrt{x}-1\right)+\sqrt{x}-5}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{4\sqrt{x}+\sqrt{x}-5}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{5\sqrt{x}-5}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{5}{\sqrt{x}+1}\)
3: A+B>1/2
=>\(\dfrac{5}{\sqrt{x}+1}-\dfrac{1}{2}>0\)
=>\(\dfrac{10-\sqrt{x}-1}{2\left(\sqrt{x}+1\right)}>0\)
=>\(9-\sqrt{x}>0\)
=>\(\sqrt{x}< 9\)
=>0<=x<81
Kết hợp ĐKXĐ, ta được: \(\left\{{}\begin{matrix}0< =x< 81\\x\ne1\end{matrix}\right.\)