\(A=\dfrac{1}{2}-\dfrac{1}{2^2}+\dfrac{1}{2^3}-\dfrac{1}{2^4}+...+\dfrac{1}{2^{99}}-\dfrac{1}{2^{100}}\)
\(\Rightarrow2A=1-\dfrac{1}{2}+\dfrac{1}{2^2}-\dfrac{1}{2^3}+...+\dfrac{1}{2^{98}}-\dfrac{1}{2^{99}}\)
\(\Rightarrow3A=A+2A\)
\(=\left(\dfrac{1}{2}-\dfrac{1}{2^2}+\dfrac{1}{2^3}-\dfrac{1}{2^4}+...+\dfrac{1}{2^{99}}-\dfrac{1}{2^{100}}\right)+\left(1-\dfrac{1}{2}+\dfrac{1}{2^2}-\dfrac{1}{2^3}+...+\dfrac{1}{2^{98}}-\dfrac{1}{2^{99}}\right)\)
\(=1-\dfrac{1}{2^{100}}\)
\(\Rightarrow A=\dfrac{1-\dfrac{1}{2^{100}}}{3}\)
Em kiểm tra lại đề xem đã ghi đề đúng chưa nhé, ở số hạng cuối cùng ấy