1: Xét tứ giác BCEF có góc BFC=góc BEC=90 độ
nên BCEF là tứ giác nội tiếp
2: AG*AB=AD^2
AH*AC=AD^2
=>AG*AB=AH*AC
=>AG/AC=AH/AB
=>ΔAGH đồng dạng với ΔACB
=>góc AGH=góc ACB=góc AFE
=>FE//GH
1: Xét tứ giác BCEF có góc BFC=góc BEC=90 độ
nên BCEF là tứ giác nội tiếp
2: AG*AB=AD^2
AH*AC=AD^2
=>AG*AB=AH*AC
=>AG/AC=AH/AB
=>ΔAGH đồng dạng với ΔACB
=>góc AGH=góc ACB=góc AFE
=>FE//GH
Cho tam giác ABC nhọn nội tiếp đường tròn (O). Kẻ các đường cao AD, BE, CF cắt nhau tại P. Gọi G, H lần lượt là hình chiếu của D lên cạnh AB và AC.
1/ chứng minh tứ giác BCEF nội tiếp
2/ chứng minh HG // EF
Cho tam giác ABC nhọn (AB<AC) có đg cao AH và nội tiếp (O). Gọi E,F lần lượt là hình chiếu của H lên các cạnh AB,AC. Đường kính AD của (O) cắt EF tại K và DH cắt (O) tại L (L khác D).
a) cm: AEHF và ALHF là tứ giác nội tiếp
b) cm: BÈC là tứ giác nội tiếp và AD vuông góc EF tại K
c) Tia FE cắt (O) tại P và cắt BC tại M. cm: AP=AH và A,L,M thẳng hàng
Cho tam giác ABC nhọn nội tiếp đường tròn (O). các đường cao AD, BE và CF của tam giác ABC cắt nhau tại H.
a. Cm: tứ giác BCEF là tứ giác nội tiếp và xác định tâm I của đường tròn ngoại tiếp tứ giác.
b. Đường thẳng EF cắt đường thẳng BC tại M và cắt đường tròn (O) tại K và T (K nằm giữa M và T).
Cm: MK.MT=MD.MI
c. Cm: tứ giác IDKT là tứ giác nội tiếp
d. Đường thẳng vuông góc với IH tại I cắt các đường thẳng AB, AC và AD lần lượt tại N, S và G. Cm G là trung điểm của đoạn NS
cho tam giác ABC nhọn ( AB<AC) nội tiếp (O), hai đường cao BE , CF cát nhau tại H . tia AO cắt đường tròn (O) tại D. a, chứng minh tứ giác BCEF nội tiếp b, chunwgs minh tứ giác BHCD là hình bình hành c, gọi M là trung điểm của BC, tia AM cắt HO tại G. cm G là trọng tâm của tam giác ABC
Cho tam giác ABC nhọn nội tiếp đường tròn (O), 2 đường cao BE và CF của tam giác ABC cắt nhau tại H. Chứng minh: a. Tứ giác BCEF nội tiếp. Xác định tâm I của đường tròn ngoại tiếp tứ giác BCEF. b. CM: AE.AC = AF.AB c. Tia AO cắt đường tròn (O) tại P, cắt EF tại Q. CM AP vuông góc với EF
cho ∆ABC nhọn nội tiếp đường tròn (O). Các đường cao AD, BE, CF, cắt nhau tại H
a) CM: tứ giác BCEF nội tiếp đường tròn và xác định tâm I của đường tròn ngoại tiếp tứ giác
b/ Đường thẳng EF cắt đường thẳng BC tại M và cắt đường tròn (O ) tại K và T
( K nằm giữa M và T ) .Chứng minh : MD. MI = MK. MT
Cho tam giác ABC có 3 híc nhọn nội tiếp (O;R) (AB < AC) ba đường cao AD,BE,CF cắt nhau tại H.Đường thẳng EF cắt BC tại K 1.Cm AEHF là tứ giác nội tiếp 2.Cm DB.DC = DH.DA
Cho tam giác ABC nhọn (AB < AC), nội tiếp đường tròn (O), các đường cao AD,BE,CF cắt nhau tại H
a) Chứng minh rằng tứ giác CDHE, BCEF nội tiếp
b) Hai đường thẳng EF và BC cắt nhau tại M. Chứng minh MB.MC = ME.MF
c) Đường thẳng qua B song song với AC cắt AM, AH ần lượt tại I,K . Chứng minh HB là phân giác của IHK
Câu 8 (3 điểm). Cho tam giác ABC nhọn nội tiếp đường tròn tamO * (AB < AC) . 3 đường cao AD, BE, CF cắt nhau tại H a) Chứng minh tứ giác BCEF nội tiếp và OA vuông góc EF b) Gọi N là trung điểm BC. Chứng minh FC là tia phân giác của góc DFE và tứ giác EFDN nội tiếp; c) Đường thẳng vuông góc AB tại A cắt BD tại I. Qua A vẽ đường thẳng song song BC cắt EF tại M. MI cắt AH tại T; vẽ AK vuông góc MT tại K. Chứng minh T là trung điểm AH.