min(!;1;1)
max (0;0;3)
Do vai trò của a, b, c là bình đẳng nên ta có thể giả sử \(a\ge b\ge c\)
*Tìm Min:
Cách 1:
Theo nguyên lí Dirichlet trong 3 số a -1; b-1; c-1 tồn tại ít nhất 2 số mà tích chúng không âm. Giả sử\(\left(a-1\right)\left(b-1\right)\ge0\Rightarrow abc\ge ca+bc-c\)
Từ đó \(P\ge a^2+b^2+c^2+ca+bc-c=a^2+b^2+c\left(a+b+c-1\right)\)
\(=\left(a^2+1\right)+\left(b^2+1\right)+2c-2\ge2\left(a+b+c\right)-2=4\)
Đẳng thức xảy ra khi \(a=b=c=1\)
*Tìm max:
\(P\le a^2+b^2+c^2+6abc\)
Ta sẽ chứng minh: \(a^2+b^2+c^2+6abc\le9=\left(a+b+c\right)^2\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2\right)+18abc\le\left(a+b+c\right)^3\)
\(VP-VP=2\left[a\left(b-c\right)^2+b\left(c-a\right)^2+c\left(a-b\right)^2\right]\ge0\)
Đẳng thức xảy ra khi \(\left(a;b;c\right)=\left(0;0;3\right)\) và các hoán vị.
Bỏ 2 dòng đầu đi nha, nháp thôi á!
Bỏ cả dòng thứ 3 luôn -_-
Sửa lại khúc cuối:
\(VP-VT=2\left[a\left(b-c\right)^2+b\left(c-a\right)^2+c\left(a-b\right)^2\right]\ge0\)
Chả biết sao cỡ này hay nhầm.