CMR với mọi a, b, c > 0 thì:
\(a^2+b^2+c^2+2abc=1\Leftrightarrow\frac{a}{a+bc}+\frac{b}{b+ca}+\frac{c}{c+ab}=2\)
CMR với mọi a, b, c > 0 thì:
\(a^2+b^2+c^2+2abc=1\Leftrightarrow\frac{a}{a+bc}+\frac{b}{b+ca}+\frac{c}{c+ab}=2\)
Chứng minh với mọi a,b,c,d>0 ta có :\(\frac{1}{a^2+b^2+c^2}+\frac{2012}{ab+bc+ca}\ge671\)
Chứng minh các bất đẳng thức sau :
a22+b^2+c^2 \(\ge\) ab + bc +ca với mọi a;b;c
Copy bài bên k2pi (chưa có đáp án) qua cho mọi người test:v
Cho a, b, c > 0 thỏa mãn ab + bc + ca = abc
Chứng minh \(\frac{a^2}{a+bc}+\frac{b^2}{b+ca}+\frac{c^2}{c+ab}\ge\frac{a+b+c}{4}\)
\(A=\frac{a^2+bc}{b+ac}+\frac{b^2+ca}{c+ab}+\frac{c^2+ab}{a+bc}\)
\(=\frac{3\left(a^2+bc\right)}{\left(a+b+c\right)b+3ac}+\frac{3\left(b^2+ca\right)}{\left(a+b+c\right)c+3ab}+\frac{3\left(c^2+ab\right)}{\left(a+b+c\right)a+3bc}\)
\(\ge\frac{3\left(a^2+bc\right)}{\left(a^2+bc\right)+\left(b^2+ca\right)+\left(c^2+ab\right)}+\frac{3\left(b^2+ca\right)}{\left(a^2+bc\right)+\left(b^2+ca\right)+\left(c^2+ab\right)}+\frac{3\left(c^2+ab\right)}{\left(a^2+bc\right)+\left(b^2+ca\right)+\left(c^2+ab\right)}=3\)
Chứng minh với mọi số thực a, b, c luôn có:
\(\left(ab+bc+ca\right)^2\ge3abc\left(a+b+c\right)\)
Với mọi a,b,c >= 1 CMR:
\(ab\sqrt{c-1}+bc\sqrt{a-1}+ca\sqrt{b-1}\le\frac{3abc}{2}\)
cho a,b,c>0, chứng minh:
1)ab+bc+ca >= a√ab+b√ca+c√ab
2)a^2+b^2+c^2 >= a√ab+b√ca+c√ab
xét các số thực a,b,c t/m 0≤a,b,c≤2 và a+b+c=3. tìm giá trị nhỏ nhất của biểu thức
P=a2+b2+c2+\(\dfrac{\left(ab+bc+ca\right)^3+8}{ab+bc+ca}\)
mình đang cần gấp ,mọi người giúp mình nhé