a) `(19xx + 2.5^2) : 14 = (13-8)^2 - 4^2 `
`(19x + 2.25) : 14 = 5^2 - 4^2`
`(19xx + 50) : 14 = 25 - 16 `
`(19xx+50) : 14 = 9`
`19xx + 50 = 9.14`
`19xx+50 = 126`
`19x = 126 - 50`
`19x = 76`
`x = 76 : 19`
`x = 4 `
Vậy `x=4`
-----------------------------
b) 2. $3^{x}$ = 10. $3^{12}$ + 8 . $27^{4}$
2 . $3^{x}$ = 10 . $3^{12}$ + 8 . (3³)^4
2 . $3^{x}$ = 10 . $3^{12}$ + 8 . $3^{12}$
2 . $3^{x}$ = $3^{12}$ . ( 10+8)
2 . $3^{x}$ = $3^{12}$ . 18
2 . $3^{x}$ = $3^{12}$ . $3^{2}$ . 2
⇒ $3^{x}$ = $3^{12}$ . $3^{2}$
$3^{x}$ = $3^{14}$
`⇒ x = 14`
`Vậy x=14`
-----------------------------
`c)`
`2x - [ 666 : ( 24 - 13 ) ] = 7`
`2x - [ 666 : 11 ] = 7`
`2x - 666/11 = 7`
`2x = 7 + 666/11`
`2x = 743/11`
`x = 743/22`
Vậy `x = 743/22`