\(10A=\dfrac{10^{10}+10}{10^{10}+1}=1+\dfrac{9}{10^{10}+1}\)
\(10B=\dfrac{10^9+10}{10^9+1}=1+\dfrac{9}{10^9+1}\)
Ta có: \(10^{10}+1>10^9+1\)
=>\(\dfrac{9}{10^{10}+1}< \dfrac{9}{10^9+1}\)
=>\(\dfrac{9}{10^{10}+1}+1< \dfrac{9}{10^9+1}+1\)
=>10A<10B
=>A<B