a. Gọi d = (2n + 5, n + 3)
\(\Rightarrow\hept{\begin{cases}\left(2n+5\right)⋮d\\\left(n+3\right)⋮d\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(2n+5\right)⋮d\\\left[2\left(n+3\right)\right]⋮d\end{cases}}\)
\(\Rightarrow\left[2\left(n+3\right)-\left(2n+5\right)\right]⋮d\)
\(\Rightarrow\left[2n+6-2n-5\right]⋮d\)
\(\Rightarrow1⋮d\Leftrightarrow d=1\)
Vậy (2n + 5, n + 3) = 1 hay \(\frac{2n+5}{n+3}\) là phân số tối giản.
a, gọi d là ucln của 2n+5 và n+3
suy ra 2n+5 chia hết cho d
n+3 chia hết cho d suy ra 2n+6 chia hết cho d
suy ra (2n+6)-(2n+5) chia hết cho d suy ra 1 chia hết cho d suy ra d=1 suy ra 2n+5/n+3 tối giản
b, B=2n+5/n+3=2n+6-1/n+3=2-1/n+3
để B nguyên suy ra 1/n+3 nguyên suy ra n+3= Ư (1) suy ra n+3=(1,-1)
n+3 = 1 suy ra n=-2
n+3=-1 suy ra n=-3
b. Để \(b\inℤ\) thì \(\left(2n+5\right)⋮\left(n+3\right)\)
\(\Rightarrow\left(2n+6-1\right)⋮\left(n+3\right)\)
\(\Rightarrow\left[2\left(n+3\right)-1\right]⋮\left(n+3\right)\)
Vì \(\left[2\left(n+3\right)\right]⋮\left(n+3\right)\) nên \(1⋮\left(2n+3\right)\)
\(\Rightarrow2n+3\inƯ\left(1\right)=\left\{\pm1\right\}\)
\(\Rightarrow n=\orbr{\begin{cases}-2\\-1\end{cases}}\)