\(A=\dfrac{5}{4}-\left(\dfrac{3}{8}+\dfrac{1}{a}\right):\dfrac{4}{5}\) \(\left(a\ne0\right)\)
Tại a = 12 biểu thức \(A=\dfrac{5}{4}-\left(\dfrac{3}{8}+\dfrac{1}{12}\right):\dfrac{4}{5}=\dfrac{5}{4}-\dfrac{11}{24}:\dfrac{4}{5}=\dfrac{5}{4}-\dfrac{11}{24}.\dfrac{5}{4}=\dfrac{5}{4}-\dfrac{55}{96}=\dfrac{65}{96}\)
Để \(A=\dfrac{15}{23}< =>\dfrac{5}{4}-\left(\dfrac{3}{8}+\dfrac{1}{a}\right):\dfrac{4}{5}=\dfrac{15}{23}\)
\(\Leftrightarrow\left(\dfrac{3}{8}+\dfrac{1}{a}\right):\dfrac{4}{5}=\dfrac{55}{92}< =>\dfrac{3}{8}+\dfrac{1}{a}=\dfrac{11}{23}< =>\dfrac{1}{a}=\dfrac{19}{184}< =>a=\dfrac{184}{19}\)
Thay \(a=12\) vào A ta có:
\(A=\dfrac{5}{4}-\left(\dfrac{3}{8}+\dfrac{1}{12}\right):\dfrac{4}{5}=\dfrac{65}{96}\)
Vậy:
____________________
Ta có:
\(A=\dfrac{15}{23}\) khi \(\dfrac{5}{4}-\left(\dfrac{3}{8}+\dfrac{1}{a}\right):\dfrac{4}{5}=\dfrac{15}{23}\)
\(\Rightarrow\left(\dfrac{3}{8}+\dfrac{1}{a}\right)\cdot\dfrac{5}{4}=\dfrac{5}{4}-\dfrac{15}{23}\)
\(\Rightarrow\dfrac{3}{8}+\dfrac{1}{a}=\dfrac{55}{92}:\dfrac{5}{4}\)
\(\Rightarrow\dfrac{3}{8}+\dfrac{1}{a}=\dfrac{11}{23}\)
\(\Rightarrow\dfrac{1}{a}=\dfrac{11}{184}\)
\(\Rightarrow a=\dfrac{1\cdot184}{11}=\dfrac{184}{11}\)