Ta có \(A=\dfrac{4x-3}{x+2}=\dfrac{4x+8-11}{x+2}=4-\dfrac{11}{x+2}\)
Để \(A\) nguyên thì \(11⋮\left(x+2\right)\Rightarrow\left(x+2\right)\inƯ\left(11\right)=\left\{1;-1;11;-11\right\}\)
\(\Rightarrow\left[{}\begin{matrix}x+2=1\\x+2=-1\\x+2=11\\x+2=-11\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-1\\x=-3\\x=9\\x=-13\end{matrix}\right.\)
Vậy tất cả các x thỏa ycbt là x=-1;x=-3;x=9 hoặc x=-13
Để A là số nguyên thì \(4x-3⋮x+2\)
\(\Leftrightarrow-11⋮x+2\)
\(\Leftrightarrow x+2\in\left\{1;-1;11;-11\right\}\)
hay \(x\in\left\{-1;-3;9;-13\right\}\)