a) \(4x\left(2x+1\right)x\)
\(=4x^2\left(2x+1\right)\)
\(=8x^3+4x^2\)
b) \(\left(3x-2\right)\left(2x+3\right)\)
\(=6x^2+9x-4x-6\)
\(=6x^2+5x-6\)
a) \(4x\left(2x+1\right)x\)
\(=4x^2\left(2x+1\right)\)
\(=8x^3+4x^2\)
b) \(\left(3x-2\right)\left(2x+3\right)\)
\(=6x^2+9x-4x-6\)
\(=6x^2+5x-6\)
: Tìm x, biết:
a) 3x( 4x- 1) - 2x(6x- 3 )=30 b) 2x(3-2x) + 2x(2x-1)=15
c) (5x-2)(4x-1) + (10x +3)(2x - 1)=1 d) (x+2) (x+2)- (x -3)(x+1) = 9
e) (4x+1)(6x-3) = 7 + (3x – 2)(8x + 9) g) (10x+2)(4x- 1)- (8x -3)(5x+2) =14
a)(2x^2-x+3)-(x^2-4x+2)+(x^2-5x-1)
b)(-3x^2+2x-5)-(4x^-2x-7)+(3x^2-8x+1)
tìm x biết:
a)(2x+2)(2x-2)-4x(x+5)=8
b)(4x+5)(4x-5)-8x(2x-7)=11
c)(1/2x-3)(1/2x+3)-1/4x(x+5)=11/2
d)(3x+2)(3x-2)-4x(x+2-5x2=18
Bài 3: Cho hai đa thức:
P(x)= \(2x^3-2x+x^2+3x+2\)
Q(x)= \(4x^3-3x^2-3x+4x-3x^3+4x^2+1\)
a) Rút gọn P(x),Q(x)
b) Chứng tỏ x=-1 là nghiệm của P(x),Q(x)
tìm x ;
a , | x | + | x + 2 | = 3
b , | 2x + 1 | + | x + 8 | = 4x
c, | 3x + 5 | + | 3 - 3x | = 2x - 1
d , | 2x - 1 | - | 3x - 3 | = 2x - 5 +( x - 2)
e , | 3x - 1 | + | x - 2 | = 2x + 3
Cho hai đa thức P(x)= 2x^3-2x+x^2+3x+2
Q(x)=4x^3-3x^2-3x+4x-3x^3+4x^2+1
a) Rút gọn P(x),Q(x)
b)Tính P(x)+Q(x)
Thu gọn đa thức sau :
a. (x+3) + 2x^2( 2x-3)-2x^3
b. -3x(x^2+x-3)-8+8x^3-6x
c.4x^2+3x^3+1-4x
thu gọn biểu thức
a, 3x*(x+2)+4x*(-2x+3)+(2x-3)*(3x+1)
b,(x2+1)*(x2-x+2)-(x2-1)*(x2+x-2)
c,(-2x-3)2+(3x+2)2+(4x+1)
Tìm x biết :
a, 4.(18 - 5x) - 12.(3x - 7) = 15.(2x - 16) - 6(x + 14)
b, 5.(3x + 5) - 4.(2x - 3) = 5x + 3.(2x + 12) + 1
c, 2.(5x - 8) - 3.(4x - 5) = 4.(3x - 4) + 11
d, (3x + 2)(2x + 9) - (x + 2)(6x + 1) = (x + 1) - (x - 6)
e, (8x - 3)(3x + 2) - (4x + 7)(x + 4)= (2x + 1)(5x - 1) - 33