a: \(=\dfrac{1}{\sqrt{2}}\left(\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}\right)\)
\(=\dfrac{1}{\sqrt{2}}\left(\sqrt{7}-1-\sqrt{7}-1\right)=-2\cdot\dfrac{1}{\sqrt{2}}=-\sqrt{2}\)
b: \(=\dfrac{1}{\sqrt{2}}\left(\sqrt{6+2\sqrt{5}}+\sqrt{6-2\sqrt{5}}\right)\)
\(=\dfrac{1}{\sqrt{2}}\left(\sqrt{5}+1+\sqrt{5}-1\right)=2\sqrt{5}\cdot\dfrac{1}{\sqrt{2}}=\sqrt{10}\)
c: \(=\dfrac{1}{\sqrt{2}}\left(\sqrt{4+2\sqrt{3}}-\sqrt{4-2\sqrt{3}}\right)\)
\(=\dfrac{1}{\sqrt{2}}\left(\sqrt{3}+1-\sqrt{3}+1\right)=\dfrac{2}{\sqrt{2}}=\sqrt{2}\)