A = 1 + 2 + 3 + ... + (n - 1) + n
A = (1 + n) × n : 2
A = 1 + 2 + 3 + ... + (n - 1) + n
A = (1 + n) × n : 2
1,Tính nhanh
A=1/3+1/3^2+1/3^3+...+1/3^2007+1/3^2008
B=1/3+1/3^2+1/3^3+...+1/3^n-1+1/3^n ; n∈N*
2,Tính tổng
a,S=1/1.2.3+1/2.3.4+1/3.4.5+..+1/2006.2007.2008
b,S=1/1.2.3+1/2.3.4+1/3.4.5+..+1/n.(n+1).(n+2); n∈N*
tính tổng dãy số:
a, A= 1 . 2 + 2 .3 + 3 . 4 + ... + n . (n+1)
b, B= 1 . 2 . 3 + 2 . 3 . 4 + 3 . 4 . 5 + ... + n . (n+1) . (n+2)
cho B=3+3 mũ 2 +...+3 mũ 2015
tìm X để 2xb+3=3 mũ 2
cho n thuộc n*
a, chứng tỏ 1+1/n.(n+2)=(n+1) mũ 2/n.(n=2)
b, ÁP DỤNG KẾT QUẢ CÂU A TÍNH
S=(1+1/1.3).(1+1/2.4).(1+1/3.5).....(1+1/2009.2011)
Bài 1:
a. (n+4)⋮(n-1)
b. (n\(^2\)+2n-3)⋮(n+1)
c. (3n-1)⋮(n-2)
d. (3n+1)⋮(2n-1)
Bài 2:
Cho A = 7+7\(^2\)+7\(^3\)+....+7\(^{36}\)
a) A là số chẵn hay lẻ?
b) Chứng minh rằng: A⋮3: A⋮8 và A⋮19
c) Tìm chữ số tận cùng của A
Bài 3.So sánh:
a) 2\(^{248}\) và 3\(^{155}\)
b) 202\(^{303}\) và 303\(^{202}\)
c) 222\(^{777}\) và 777\(^{222}\)
A=1:1!3+2:2!3+1:3!5+...+1:(n-2)!n .Chứng minh A bé hơn 1:2 với n lớn hơn hoặc bằng 3
Tìm a= \(3^{n+1}\)+\(3^n\)-1, b= 2. \(3^{n+1}\)-\(3^n\)+1 (n ∈ N). Chứng minh a hoặc b không chia hết cho 7
Tính;
a,1.2+2.3+3.4+...+(n-1).n
b,1^2+2^2+3^2+...+n^2
c,1^3+2^3+3^3+...+n^3
d,1+1.2^2+2.3^2+...+(n-1).n^2
Chứng minh rằng:
a) A=1/2^2+1/3^2+1/4^2+...+1/2010^2<1
b) B=1/2+2/2^2+3/2^3+...+100/2^100<2
c) C=1/3+2/3^2+3/3^3+...+100/3^100<3/4
d) D=1/2^3+1/3^3+1/4^3+...+1/n^3<1/4 (n€ N;n> hoặc = 3)
e) E=1/3^3+1/4^3+1/5^3+...+1/n^3<1/12 (n€N; n> hoặc = 3)
f) F=2/1*4/3*6/5*...*200/199<20
g) G=3/4+5/36+7/144+...+2n+1/n^2*(n+1)^2<1 (n nguyên dương)
h) H=1/2*(1/6+1/24+1/60+...+1/9240)>57/462
i) I=1/31+1/32+1/33+...+1/2048>3
j) J=(1-1/3)*(1-1/6)*(1-1/10)*...*(1-1/253)<2/5
k) K=1/2!+2/3!+3/4!+...+n-1/n! (n€N;n> hoặc = 2)
l) L=1/2!+5/3!+11/4!+...+n^2+n-1/(n+1)!<2
m) 1/6M=1/5^2+1/6^2+1/7^2+...+1/100^2<1/4
Chứng minh:
A=1+2+3+....+(n-1)+n= n(n+1):2
B=1.2+2.3+3.4+....+(n-1)n=1/3.n.(n-1).(n+1)
a) Cho phân số A=\(\dfrac{2n-3}{n+7}\)
Hỏi có bao nhiêu số tự nhiên n nhỏ hơn 200 để A chưa tối giản.
b) Tìm số tự nhiên n biết:
\(\dfrac{1}{1}\)+\(\dfrac{1}{1+2}\)+\(\dfrac{1}{1+2+3}\)+\(\dfrac{1}{1+2+3+4}\)+....+\(\dfrac{1}{1+2+3+4+...+n}\)=\(\dfrac{200}{101}\)
Giúp với ạ!!!