\(A=1+2^2+2^3+...+2^{100}\)
\(2A=2+2^3+2^4+...+2^{101}\)
\(2A-A=\left(2+2^3+2^4+...+2^{101}\right)-\left(1+2^2+2^3+...+2^{100}\right)\)
\(A=\left(2+2^{101}\right)-\left(1+2^2\right)\)
B tự tính A nhé
\(2A=2+2^3+2^4+...+2^{101}\)
\(2A-A=\left(2+2^3+...+2^{101}\right)-\left(1+2^2+...+2^{100}\right)\)
\(A=\left(2+2^{101}\right)-\left(1+2^2\right)\)
\(A=2+2^{101}-5\)
\(A=2^{101}-3\)
Tính tổng :
A = 1 + 2^2 + 2^3 +... +2^100
2A = 2 + 2^3 + 2^4 +... +2^101
2A-A = ( 2 + 2^3 + 2^4 + ... + 2^101 ) - ( 1 + 2^2 +2^3 + ... +2^100 )
A = ( 2 + 2^101 ) - ( 1 + 2^100 )
= 2 + 2^101 - 1 + 2^100
= ( 2 - 1 ) + ( 2^101 + 2^100 )
= 1 + ( 2^101 + 2^100 )